forked from mindspore-Ecosystem/mindspore
101 lines
3.5 KiB
Python
101 lines
3.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, _shape):
|
|
super(Net, self).__init__()
|
|
self.shape = _shape
|
|
self.scatternd = P.ScatterNd()
|
|
|
|
def construct(self, indices, update):
|
|
return self.scatternd(indices, update, self.shape)
|
|
|
|
|
|
def scatternd_net(indices, update, _shape, expect):
|
|
scatternd = Net(_shape)
|
|
output = scatternd(Tensor(indices), Tensor(update))
|
|
error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
|
|
diff = output.asnumpy() - expect
|
|
assert np.all(diff < error)
|
|
assert np.all(-diff < error)
|
|
|
|
def scatternd_positive(nptype):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32)
|
|
arr_update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(nptype)
|
|
shape = (2, 2)
|
|
expect = np.array([[0., 5.3],
|
|
[0., 1.1]]).astype(nptype)
|
|
scatternd_net(arr_indices, arr_update, shape, expect)
|
|
|
|
arr_indices = np.array([[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int64)
|
|
arr_update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(nptype)
|
|
shape = (2, 2)
|
|
expect = np.array([[0., 5.3],
|
|
[0., 1.1]]).astype(nptype)
|
|
scatternd_net(arr_indices, arr_update, shape, expect)
|
|
|
|
def scatternd_negative(nptype):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
arr_indices = np.array([[1, 0], [1, 1], [1, 0], [1, 0], [1, 0]]).astype(np.int32)
|
|
arr_update = np.array([-13.4, -3.1, 5.1, -12.1, -1.0]).astype(nptype)
|
|
shape = (2, 2)
|
|
expect = np.array([[0., 0.],
|
|
[-21.4, -3.1]]).astype(nptype)
|
|
scatternd_net(arr_indices, arr_update, shape, expect)
|
|
|
|
arr_indices = np.array([[1, 0], [1, 1], [1, 0], [1, 0], [1, 0]]).astype(np.int64)
|
|
arr_update = np.array([-13.4, -3.1, 5.1, -12.1, -1.0]).astype(nptype)
|
|
shape = (2, 2)
|
|
expect = np.array([[0., 0.],
|
|
[-21.4, -3.1]]).astype(nptype)
|
|
scatternd_net(arr_indices, arr_update, shape, expect)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_traning
|
|
@pytest.mark.env_onecard
|
|
def test_scatternd_float32():
|
|
scatternd_positive(np.float32)
|
|
scatternd_negative(np.float32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_traning
|
|
@pytest.mark.env_onecard
|
|
def test_scatternd_float16():
|
|
scatternd_positive(np.float16)
|
|
scatternd_negative(np.float16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_traning
|
|
@pytest.mark.env_onecard
|
|
def test_scatternd_int16():
|
|
scatternd_positive(np.int16)
|
|
scatternd_negative(np.int16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_traning
|
|
@pytest.mark.env_onecard
|
|
def test_scatternd_uint8():
|
|
scatternd_positive(np.uint8)
|