mindspore/tests/st/ops/gpu/test_relu_op.py

150 lines
4.7 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class NetRelu(nn.Cell):
def __init__(self):
super(NetRelu, self).__init__()
self.relu = P.ReLU()
def construct(self, x):
return self.relu(x)
class NetReluDynamic(nn.Cell):
def __init__(self):
super(NetReluDynamic, self).__init__()
self.conv = inner.GpuConvertToDynamicShape()
self.relu = P.ReLU()
def construct(self, x):
x_conv = self.conv(x)
return self.relu(x_conv)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_relu_float32():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_relu_int8():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.int8))
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.int8)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_relu_int32():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.int32))
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_relu_int64():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.int64))
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.int64)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
print(output.asnumpy(), expect)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
relu = NetRelu()
output = relu(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_relu_int64_dynamic_shape():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.int64))
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.int64)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
relu_dynamic = NetReluDynamic()
output = relu_dynamic(x)
assert (output.asnumpy() == expect).all()