mindspore/tests/st/ops/gpu/test_reduce_min_op.py

98 lines
3.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class ReduceMin(nn.Cell):
def __init__(self, keep_dims):
super(ReduceMin, self).__init__()
self.reduce_min = P.ReduceMin(keep_dims=keep_dims)
def construct(self, x, axis):
return self.reduce_min(x, axis)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
@pytest.mark.parametrize('shape, axis, keep_dims',
[((2, 3, 4, 4), 3, True), ((2, 3, 4, 4), 3, False), ((2, 3, 1, 4), 2, True),
((2, 3, 1, 4), 2, False), ((2, 3, 4, 4), None, True), ((2, 3, 4, 4), None, False),
((2, 3, 4, 4), -2, False), ((2, 3, 4, 4), (-2, -1), False), ((1, 1, 1, 1), None, True)])
def test_reduce_min(dtype, shape, axis, keep_dims):
"""
Feature: ALL To ALL
Description: test cases for ReduceMin
Expectation: the result match to numpy
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
x = np.random.rand(*shape).astype(dtype)
tensor_x = Tensor(x)
reduce_min = ReduceMin(keep_dims)
ms_axis = axis if axis is not None else ()
output = reduce_min(tensor_x, ms_axis)
expect = np.min(x, axis=axis, keepdims=keep_dims)
diff = abs(output.asnumpy() - expect)
error = np.ones(shape=expect.shape) * 1.0e-5
assert np.all(diff < error)
assert output.shape == expect.shape
class ReduceMinDynamic(nn.Cell):
def __init__(self, x, axis):
super(ReduceMinDynamic, self).__init__()
self.reduce_min = P.ReduceMin(False)
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.x = x
self.axis = axis
def construct(self):
dynamic_x = self.test_dynamic(self.x)
return self.reduce_min(dynamic_x, self.axis)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.float32])
@pytest.mark.parametrize('shape, axis, keep_dims',
[((1, 1, 1, 1), 0, False), ((2, 3, 4, 4), 0, False)])
def test_reduce_min_dynamic(dtype, shape, axis, keep_dims):
"""
Feature: ALL To ALL
Description: test cases for ReduceMin with dynamic shape
Expectation: the result match to numpy
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = np.random.rand(*shape).astype(dtype)
ms_axis = axis if axis is not None else ()
net = ReduceMinDynamic(Tensor(x), ms_axis)
expect = np.min(x, axis=axis, keepdims=keep_dims)
output = net()
np.testing.assert_almost_equal(output.asnumpy(), expect)