forked from mindspore-Ecosystem/mindspore
220 lines
5.2 KiB
Python
220 lines
5.2 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import Tensor
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import operations as P
|
|
import mindspore.context as context
|
|
from tests.security_utils import security_off_wrap
|
|
|
|
|
|
class PrintNetOneInput(nn.Cell):
|
|
def __init__(self):
|
|
super(PrintNetOneInput, self).__init__()
|
|
self.op = P.Print()
|
|
|
|
def construct(self, x):
|
|
self.op(x)
|
|
return x
|
|
|
|
|
|
class PrintNetTwoInputs(nn.Cell):
|
|
def __init__(self):
|
|
super(PrintNetTwoInputs, self).__init__()
|
|
self.op = P.Print()
|
|
|
|
def construct(self, x, y):
|
|
self.op(x, y)
|
|
return x
|
|
|
|
|
|
class PrintNetIndex(nn.Cell):
|
|
def __init__(self):
|
|
super(PrintNetIndex, self).__init__()
|
|
self.op = P.Print()
|
|
|
|
def construct(self, x):
|
|
self.op(x[0][0][6][3])
|
|
return x
|
|
|
|
|
|
|
|
@security_off_wrap
|
|
def print_testcase(nptype):
|
|
# large shape
|
|
x = np.arange(20808).reshape(6, 3, 34, 34).astype(nptype)
|
|
# a value that can be stored as int8_t
|
|
x[0][0][6][3] = 125
|
|
# small shape
|
|
y = np.arange(9).reshape(3, 3).astype(nptype)
|
|
x = Tensor(x)
|
|
y = Tensor(y)
|
|
# graph mode
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
net_1 = PrintNetOneInput()
|
|
net_2 = PrintNetTwoInputs()
|
|
net_3 = PrintNetIndex()
|
|
net_1(x)
|
|
net_2(x, y)
|
|
net_3(x)
|
|
|
|
|
|
class PrintNetString(nn.Cell):
|
|
def __init__(self):
|
|
super(PrintNetString, self).__init__()
|
|
self.op = P.Print()
|
|
|
|
def construct(self, x, y):
|
|
self.op("The first Tensor is", x)
|
|
self.op("The second Tensor is", y)
|
|
self.op("This line only prints string", "Another line")
|
|
self.op("The first Tensor is", x, y, "is the second Tensor")
|
|
return x
|
|
|
|
|
|
@security_off_wrap
|
|
def print_testcase_string(nptype):
|
|
x = np.ones(18).astype(nptype)
|
|
y = np.arange(9).reshape(3, 3).astype(nptype)
|
|
x = Tensor(x)
|
|
y = Tensor(y)
|
|
# graph mode
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
net = PrintNetString()
|
|
net(x, y)
|
|
|
|
|
|
class PrintTypes(nn.Cell):
|
|
def __init__(self):
|
|
super(PrintTypes, self).__init__()
|
|
self.op = P.Print()
|
|
|
|
def construct(self, x, y, z):
|
|
self.op("This is a scalar:", 34, "This is int:", x, "This is float64:", y, "This is int64:", z)
|
|
return x
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_multiple_types():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
x = Tensor(np.array([[1], [3], [4], [6], [3]], dtype=np.int32))
|
|
y = Tensor(np.array([[1], [3], [4], [6], [3]]).astype(np.float64))
|
|
z = Tensor(np.arange(9).reshape(3, 3).astype(np.int64))
|
|
net = PrintTypes()
|
|
net(x, y, z)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_bool():
|
|
print_testcase(np.bool)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_int8():
|
|
print_testcase(np.int8)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_int16():
|
|
print_testcase(np.int16)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_int32():
|
|
print_testcase(np.int32)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_int64():
|
|
print_testcase(np.int64)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_uint8():
|
|
print_testcase(np.uint8)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_uint16():
|
|
print_testcase(np.uint16)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_uint32():
|
|
print_testcase(np.uint32)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_uint64():
|
|
print_testcase(np.uint64)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_float16():
|
|
print_testcase(np.float16)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_float32():
|
|
print_testcase(np.float32)
|
|
|
|
|
|
@security_off_wrap
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_print_string():
|
|
print_testcase_string(np.float32)
|