forked from mindspore-Ecosystem/mindspore
107 lines
2.7 KiB
Python
107 lines
2.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
class GeluNet(nn.Cell):
|
|
def __init__(self):
|
|
super(GeluNet, self).__init__()
|
|
self.gelu = P.GeLU()
|
|
|
|
def construct(self, x):
|
|
return self.gelu(x)
|
|
|
|
|
|
def GeluCompute(x):
|
|
return 0.5 * x * (1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x * x * x)))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gelu_1d():
|
|
x_np = np.random.random((50,)).astype(np.float32)
|
|
y_np = GeluCompute(x_np)
|
|
|
|
x_ms = Tensor(x_np)
|
|
net = GeluNet()
|
|
y_ms = net(x_ms)
|
|
|
|
assert np.allclose(y_np, y_ms.asnumpy())
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gelu_2d():
|
|
x_np = np.random.random((50, 40)).astype(np.float32)
|
|
y_np = GeluCompute(x_np)
|
|
|
|
x_ms = Tensor(x_np)
|
|
net = GeluNet()
|
|
y_ms = net(x_ms)
|
|
|
|
assert np.allclose(y_np, y_ms.asnumpy())
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gelu_4d():
|
|
x_np = np.random.random((32, 3, 224, 224)).astype(np.float32)
|
|
y_np = GeluCompute(x_np)
|
|
|
|
x_ms = Tensor(x_np)
|
|
net = GeluNet()
|
|
y_ms = net(x_ms)
|
|
|
|
assert np.allclose(y_np, y_ms.asnumpy())
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gelu_neg():
|
|
x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) * -1
|
|
y_np = GeluCompute(x_np)
|
|
|
|
x_ms = Tensor(x_np)
|
|
net = GeluNet()
|
|
y_ms = net(x_ms)
|
|
|
|
assert np.allclose(y_np, y_ms.asnumpy())
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gelu_4d_fp16():
|
|
x_np = np.random.random((32, 3, 224, 224)).astype(np.float16)
|
|
y_np = GeluCompute(x_np)
|
|
|
|
x_ms = Tensor(x_np)
|
|
net = GeluNet()
|
|
y_ms = net(x_ms)
|
|
|
|
assert np.allclose(y_np, y_ms.asnumpy(), rtol=1e-3)
|