mindspore/tests/st/ops/gpu/test_gather_grad_op.py

179 lines
7.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore as ms
import mindspore.ops.operations as P
import mindspore.ops.operations._grad_ops as G
from mindspore.ops.composite import GradOperation
from mindspore import Tensor
class GatherDNet(nn.Cell):
def __init__(self, dim=0):
super(GatherDNet, self).__init__()
self.gather_d = P.GatherD()
self.dim = dim
def construct(self, x, index):
return self.gather_d(x, self.dim, index)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_graph_int32_fp32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float32)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
net = GatherDNet(dim)
grad_net = GradOperation(get_all=True, sens_param=True)(net)
output = grad_net(x, index, grad)
error = 1e-4
diff = output[0].asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_graph_int64_fp32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float32)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
net = GatherDNet(dim)
grad_net = GradOperation(get_all=True, sens_param=True)(net)
output = grad_net(x, index, grad)
error = 1e-4
diff = output[0].asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_graph_int32_fp16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float16)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
net = GatherDNet(dim)
grad_net = GradOperation(get_all=True, sens_param=True)(net)
output = grad_net(x, index, grad)
error = 1e-4
diff = output[0].asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_graph_int64_fp16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = Tensor(np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), ms.float16)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
net = GatherDNet(dim)
grad_net = GradOperation(get_all=True, sens_param=True)(net)
output = grad_net(x, index, grad)
error = 1e-4
diff = output[0].asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_pynative_int32_fp32():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x_shape = (2, 5)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
output = G.GatherDGrad(dim, x_shape)(index, grad)
error = 1e-4
diff = output.asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_pynative_int64_fp32():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x_shape = (2, 5)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
output = G.GatherDGrad(dim, x_shape)(index, grad)
error = 1e-4
diff = output.asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_pynative_int32_fp16():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x_shape = (2, 5)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
output = G.GatherDGrad(dim, x_shape)(index, grad)
error = 1e-4
diff = output.asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather_grad_pynative_int64_fp16():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x_shape = (2, 5)
dim = 0
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
output = G.GatherDGrad(dim, x_shape)(index, grad)
error = 1e-4
diff = output.asnumpy() - expect
assert np.all(diff < error)