forked from mindspore-Ecosystem/mindspore
314 lines
16 KiB
Python
314 lines
16 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""task distill script"""
|
|
|
|
import os
|
|
import re
|
|
import argparse
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.callback import TimeMonitor
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
|
|
from mindspore.nn.optim import AdamWeightDecay
|
|
from mindspore import log as logger
|
|
from src.dataset import create_tinybert_dataset
|
|
from src.utils import LossCallBack, ModelSaveCkpt, EvalCallBack, BertLearningRate
|
|
from src.assessment_method import Accuracy
|
|
from src.td_config import phase1_cfg, phase2_cfg, td_teacher_net_cfg, td_student_net_cfg
|
|
from src.tinybert_for_gd_td import BertEvaluationWithLossScaleCell, BertNetworkWithLoss_td, BertEvaluationCell
|
|
from src.tinybert_model import BertModelCLS
|
|
|
|
_cur_dir = os.getcwd()
|
|
td_phase1_save_ckpt_dir = os.path.join(_cur_dir, 'tinybert_td_phase1_save_ckpt')
|
|
td_phase2_save_ckpt_dir = os.path.join(_cur_dir, 'tinybert_td_phase2_save_ckpt')
|
|
if not os.path.exists(td_phase1_save_ckpt_dir):
|
|
os.makedirs(td_phase1_save_ckpt_dir)
|
|
if not os.path.exists(td_phase2_save_ckpt_dir):
|
|
os.makedirs(td_phase2_save_ckpt_dir)
|
|
|
|
def parse_args():
|
|
"""
|
|
parse args
|
|
"""
|
|
parser = argparse.ArgumentParser(description='tinybert task distill')
|
|
parser.add_argument("--device_target", type=str, default="Ascend", choices=['Ascend', 'GPU'],
|
|
help='device where the code will be implemented. (Default: Ascend)')
|
|
parser.add_argument("--do_train", type=str, default="true", help="Do train task, default is true.")
|
|
parser.add_argument("--do_eval", type=str, default="true", help="Do eval task, default is true.")
|
|
parser.add_argument("--td_phase1_epoch_size", type=int, default=10,
|
|
help="Epoch size for td phase 1, default is 10.")
|
|
parser.add_argument("--td_phase2_epoch_size", type=int, default=3, help="Epoch size for td phase 2, default is 3.")
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.")
|
|
parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.")
|
|
parser.add_argument("--save_ckpt_step", type=int, default=100, help="Enable data sink, default is true.")
|
|
parser.add_argument("--max_ckpt_num", type=int, default=1, help="Enable data sink, default is true.")
|
|
parser.add_argument("--data_sink_steps", type=int, default=1, help="Sink steps for each epoch, default is 1.")
|
|
parser.add_argument("--load_teacher_ckpt_path", type=str, default="", help="Load checkpoint file path")
|
|
parser.add_argument("--load_gd_ckpt_path", type=str, default="", help="Load checkpoint file path")
|
|
parser.add_argument("--load_td1_ckpt_path", type=str, default="", help="Load checkpoint file path")
|
|
parser.add_argument("--train_data_dir", type=str, default="", help="Data path, it is better to use absolute path")
|
|
parser.add_argument("--eval_data_dir", type=str, default="", help="Data path, it is better to use absolute path")
|
|
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
|
|
parser.add_argument("--task_name", type=str, default="", choices=["SST-2", "QNLI", "MNLI"],
|
|
help="The name of the task to train.")
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
args_opt = parse_args()
|
|
|
|
DEFAULT_NUM_LABELS = 2
|
|
DEFAULT_SEQ_LENGTH = 128
|
|
task_params = {"SST-2": {"num_labels": 2, "seq_length": 64},
|
|
"QNLI": {"num_labels": 2, "seq_length": 128},
|
|
"MNLI": {"num_labels": 3, "seq_length": 128}}
|
|
|
|
|
|
class Task:
|
|
"""
|
|
Encapsulation class of get the task parameter.
|
|
"""
|
|
def __init__(self, task_name):
|
|
self.task_name = task_name
|
|
|
|
@property
|
|
def num_labels(self):
|
|
if self.task_name in task_params and "num_labels" in task_params[self.task_name]:
|
|
return task_params[self.task_name]["num_labels"]
|
|
return DEFAULT_NUM_LABELS
|
|
|
|
@property
|
|
def seq_length(self):
|
|
if self.task_name in task_params and "seq_length" in task_params[self.task_name]:
|
|
return task_params[self.task_name]["seq_length"]
|
|
return DEFAULT_SEQ_LENGTH
|
|
task = Task(args_opt.task_name)
|
|
|
|
|
|
def run_predistill():
|
|
"""
|
|
run predistill
|
|
"""
|
|
cfg = phase1_cfg
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
|
|
context.set_context(reserve_class_name_in_scope=False)
|
|
load_teacher_checkpoint_path = args_opt.load_teacher_ckpt_path
|
|
load_student_checkpoint_path = args_opt.load_gd_ckpt_path
|
|
netwithloss = BertNetworkWithLoss_td(teacher_config=td_teacher_net_cfg, teacher_ckpt=load_teacher_checkpoint_path,
|
|
student_config=td_student_net_cfg, student_ckpt=load_student_checkpoint_path,
|
|
is_training=True, task_type='classification',
|
|
num_labels=task.num_labels, is_predistill=True)
|
|
|
|
rank = 0
|
|
device_num = 1
|
|
dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size,
|
|
device_num, rank, args_opt.do_shuffle,
|
|
args_opt.train_data_dir, args_opt.schema_dir)
|
|
|
|
dataset_size = dataset.get_dataset_size()
|
|
print('td1 dataset size: ', dataset_size)
|
|
print('td1 dataset repeatcount: ', dataset.get_repeat_count())
|
|
if args_opt.enable_data_sink == 'true':
|
|
repeat_count = args_opt.td_phase1_epoch_size * dataset_size // args_opt.data_sink_steps
|
|
time_monitor_steps = args_opt.data_sink_steps
|
|
else:
|
|
repeat_count = args_opt.td_phase1_epoch_size
|
|
time_monitor_steps = dataset_size
|
|
|
|
optimizer_cfg = cfg.optimizer_cfg
|
|
|
|
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
|
|
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
|
|
warmup_steps=int(dataset_size / 10),
|
|
decay_steps=int(dataset_size * args_opt.td_phase1_epoch_size),
|
|
power=optimizer_cfg.AdamWeightDecay.power)
|
|
params = netwithloss.trainable_params()
|
|
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
|
|
other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
|
|
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
|
|
{'params': other_params, 'weight_decay': 0.0},
|
|
{'order_params': params}]
|
|
|
|
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
|
|
callback = [TimeMonitor(time_monitor_steps), LossCallBack(), ModelSaveCkpt(netwithloss.bert,
|
|
args_opt.save_ckpt_step,
|
|
args_opt.max_ckpt_num,
|
|
td_phase1_save_ckpt_dir)]
|
|
if enable_loss_scale:
|
|
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
|
|
scale_factor=cfg.scale_factor,
|
|
scale_window=cfg.scale_window)
|
|
netwithgrads = BertEvaluationWithLossScaleCell(netwithloss, optimizer=optimizer, scale_update_cell=update_cell)
|
|
else:
|
|
netwithgrads = BertEvaluationCell(netwithloss, optimizer=optimizer)
|
|
|
|
model = Model(netwithgrads)
|
|
model.train(repeat_count, dataset, callbacks=callback,
|
|
dataset_sink_mode=(args_opt.enable_data_sink == 'true'),
|
|
sink_size=args_opt.data_sink_steps)
|
|
|
|
def run_task_distill(ckpt_file):
|
|
"""
|
|
run task distill
|
|
"""
|
|
if ckpt_file == '':
|
|
raise ValueError("Student ckpt file should not be None")
|
|
cfg = phase2_cfg
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
|
|
load_teacher_checkpoint_path = args_opt.load_teacher_ckpt_path
|
|
load_student_checkpoint_path = ckpt_file
|
|
netwithloss = BertNetworkWithLoss_td(teacher_config=td_teacher_net_cfg, teacher_ckpt=load_teacher_checkpoint_path,
|
|
student_config=td_student_net_cfg, student_ckpt=load_student_checkpoint_path,
|
|
is_training=True, task_type='classification',
|
|
num_labels=task.num_labels, is_predistill=False)
|
|
|
|
rank = 0
|
|
device_num = 1
|
|
train_dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size,
|
|
device_num, rank, args_opt.do_shuffle,
|
|
args_opt.train_data_dir, args_opt.schema_dir)
|
|
|
|
dataset_size = train_dataset.get_dataset_size()
|
|
print('td2 train dataset size: ', dataset_size)
|
|
print('td2 train dataset repeatcount: ', train_dataset.get_repeat_count())
|
|
if args_opt.enable_data_sink == 'true':
|
|
repeat_count = args_opt.td_phase2_epoch_size * train_dataset.get_dataset_size() // args_opt.data_sink_steps
|
|
time_monitor_steps = args_opt.data_sink_steps
|
|
else:
|
|
repeat_count = args_opt.td_phase2_epoch_size
|
|
time_monitor_steps = dataset_size
|
|
|
|
optimizer_cfg = cfg.optimizer_cfg
|
|
|
|
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
|
|
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
|
|
warmup_steps=int(dataset_size * args_opt.td_phase2_epoch_size / 10),
|
|
decay_steps=int(dataset_size * args_opt.td_phase2_epoch_size),
|
|
power=optimizer_cfg.AdamWeightDecay.power)
|
|
params = netwithloss.trainable_params()
|
|
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
|
|
other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
|
|
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
|
|
{'params': other_params, 'weight_decay': 0.0},
|
|
{'order_params': params}]
|
|
|
|
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
|
|
|
|
eval_dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size,
|
|
device_num, rank, args_opt.do_shuffle,
|
|
args_opt.eval_data_dir, args_opt.schema_dir)
|
|
print('td2 eval dataset size: ', eval_dataset.get_dataset_size())
|
|
|
|
if args_opt.do_eval.lower() == "true":
|
|
callback = [TimeMonitor(time_monitor_steps), LossCallBack(),
|
|
EvalCallBack(netwithloss.bert, eval_dataset)]
|
|
else:
|
|
callback = [TimeMonitor(time_monitor_steps), LossCallBack(),
|
|
ModelSaveCkpt(netwithloss.bert,
|
|
args_opt.save_ckpt_step,
|
|
args_opt.max_ckpt_num,
|
|
td_phase2_save_ckpt_dir)]
|
|
if enable_loss_scale:
|
|
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
|
|
scale_factor=cfg.scale_factor,
|
|
scale_window=cfg.scale_window)
|
|
|
|
netwithgrads = BertEvaluationWithLossScaleCell(netwithloss, optimizer=optimizer, scale_update_cell=update_cell)
|
|
else:
|
|
netwithgrads = BertEvaluationCell(netwithloss, optimizer=optimizer)
|
|
model = Model(netwithgrads)
|
|
model.train(repeat_count, train_dataset, callbacks=callback,
|
|
dataset_sink_mode=(args_opt.enable_data_sink == 'true'),
|
|
sink_size=args_opt.data_sink_steps)
|
|
|
|
def do_eval_standalone():
|
|
"""
|
|
do eval standalone
|
|
"""
|
|
ckpt_file = args_opt.load_td1_ckpt_path
|
|
if ckpt_file == '':
|
|
raise ValueError("Student ckpt file should not be None")
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
|
|
eval_model = BertModelCLS(td_student_net_cfg, False, task.num_labels, 0.0, phase_type="student")
|
|
param_dict = load_checkpoint(ckpt_file)
|
|
new_param_dict = {}
|
|
for key, value in param_dict.items():
|
|
new_key = re.sub('tinybert_', 'bert_', key)
|
|
new_key = re.sub('^bert.', '', new_key)
|
|
new_param_dict[new_key] = value
|
|
load_param_into_net(eval_model, new_param_dict)
|
|
eval_model.set_train(False)
|
|
|
|
eval_dataset = create_tinybert_dataset('td', batch_size=td_student_net_cfg.batch_size,
|
|
device_num=1, rank=0, do_shuffle="false",
|
|
data_dir=args_opt.eval_data_dir,
|
|
schema_dir=args_opt.schema_dir)
|
|
print('eval dataset size: ', eval_dataset.get_dataset_size())
|
|
print('eval dataset batch size: ', eval_dataset.get_batch_size())
|
|
|
|
callback = Accuracy()
|
|
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
|
|
for data in eval_dataset.create_dict_iterator():
|
|
input_data = []
|
|
for i in columns_list:
|
|
input_data.append(Tensor(data[i]))
|
|
input_ids, input_mask, token_type_id, label_ids = input_data
|
|
logits = eval_model(input_ids, token_type_id, input_mask)
|
|
callback.update(logits[3], label_ids)
|
|
acc = callback.acc_num / callback.total_num
|
|
print("======================================")
|
|
print("============== acc is {}".format(acc))
|
|
print("======================================")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if args_opt.do_train.lower() != "true" and args_opt.do_eval.lower() != "true":
|
|
raise ValueError("do_train or do eval must have one be true, please confirm your config")
|
|
|
|
enable_loss_scale = True
|
|
if args_opt.device_target == "GPU":
|
|
if td_student_net_cfg.compute_type != mstype.float32:
|
|
logger.warning('Compute about the student only support float32 temporarily, run with float32.')
|
|
td_student_net_cfg.compute_type = mstype.float32
|
|
# Backward of the network are calculated using fp32,
|
|
# and the loss scale is not necessary
|
|
enable_loss_scale = False
|
|
|
|
td_teacher_net_cfg.seq_length = task.seq_length
|
|
td_student_net_cfg.seq_length = task.seq_length
|
|
|
|
if args_opt.do_train == "true":
|
|
# run predistill
|
|
run_predistill()
|
|
lists = os.listdir(td_phase1_save_ckpt_dir)
|
|
if lists:
|
|
lists.sort(key=lambda fn: os.path.getmtime(td_phase1_save_ckpt_dir+'/'+fn))
|
|
name_ext = os.path.splitext(lists[-1])
|
|
if name_ext[-1] != ".ckpt":
|
|
raise ValueError("Invalid file, checkpoint file should be .ckpt file")
|
|
newest_ckpt_file = os.path.join(td_phase1_save_ckpt_dir, lists[-1])
|
|
# run task distill
|
|
run_task_distill(newest_ckpt_file)
|
|
else:
|
|
raise ValueError("Checkpoint file not exists, please make sure ckpt file has been saved")
|
|
else:
|
|
do_eval_standalone()
|