forked from mindspore-Ecosystem/mindspore
112 lines
4.1 KiB
Python
112 lines
4.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train import Model
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
from ....dataset_mock import MindData
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class MindDataSet(MindData):
|
|
def __init__(self, dataset_types, dataset_shapes):
|
|
super(MindDataSet, self).__init__(size=2, batch_size=32,
|
|
np_types=dataset_types,
|
|
output_shapes=dataset_shapes,
|
|
input_indexs=(0, 1))
|
|
|
|
def __next__(self):
|
|
if self._size < self._iter_num:
|
|
raise StopIteration
|
|
self._iter_num += 1
|
|
next_ = []
|
|
for shape, type_ in zip(self._output_shapes, self._np_types):
|
|
next_.append(Tensor(np.ones(shape).astype(type_)))
|
|
return tuple(next_)
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, in_features, out_features):
|
|
super(Net, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.add = P.TensorAdd()
|
|
|
|
def construct(self, input_):
|
|
output = self.add(self.matmul(input_, self.weight), self.bias)
|
|
return output
|
|
|
|
|
|
class NetFP16(nn.Cell):
|
|
def __init__(self, in_features, out_features):
|
|
super(NetFP16, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.add = P.TensorAdd()
|
|
self.cast = P.Cast()
|
|
|
|
def construct(self, input_):
|
|
output = self.cast(
|
|
self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
|
|
self.cast(self.bias, mstype.float16)), mstype.float32)
|
|
return output
|
|
|
|
|
|
def get_axis(x):
|
|
shape_op = P.Shape()
|
|
shape = shape_op(x)
|
|
length = F.tuple_len(shape)
|
|
perm = F.make_range(0, length)
|
|
return perm
|
|
|
|
|
|
class MSELoss(nn.Cell):
|
|
def __init__(self):
|
|
super(MSELoss, self).__init__()
|
|
self.reduce_sum = P.ReduceSum()
|
|
self.square = P.Square()
|
|
self.reduce_mean = P.ReduceMean()
|
|
|
|
def construct(self, data, label):
|
|
diff = data - label
|
|
return self.reduce_mean(self.square(diff), get_axis(diff))
|
|
|
|
|
|
def test_auto_parallel_flag():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=1)
|
|
dataset_types = (np.float32, np.float32)
|
|
dataset_shapes = ((16, 16), (16, 16))
|
|
|
|
dataset = MindDataSet(dataset_types, dataset_shapes)
|
|
net = NetFP16(16, 16)
|
|
net.set_train()
|
|
scale_manager = FixedLossScaleManager()
|
|
loss = MSELoss()
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics=None, loss_scale_manager=scale_manager)
|
|
model.train(2, dataset)
|
|
assert model._train_network.get_flags()["auto_parallel"]
|
|
context.reset_auto_parallel_context()
|