forked from mindspore-Ecosystem/mindspore
89 lines
3.0 KiB
Python
89 lines
3.0 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, z, w):
|
|
predict = self.network(x, y, z, w)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, z, w):
|
|
return C.grad_all(self.network)(x, y, z, w)
|
|
|
|
# model_parallel test
|
|
|
|
|
|
def test_double_star_graph():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul()
|
|
self.matmul2 = P.MatMul()
|
|
self.matmul3 = P.MatMul()
|
|
self.cast1 = P.Cast()
|
|
self.cast2 = P.Cast()
|
|
|
|
def construct(self, x, y, z, w):
|
|
m1_result = self.matmul1(x, y)
|
|
m2_result = self.matmul2(z, w)
|
|
m3_result = self.matmul3(self.cast1(m2_result, mstype.float16), self.cast2(m1_result, mstype.float16))
|
|
|
|
return m3_result
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
|
|
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
|
y = Tensor(np.ones([8, 16]), dtype=ms.float32)
|
|
z = Tensor(np.ones([8, 16]), dtype=ms.float32)
|
|
w = Tensor(np.ones([16, 32]), dtype=ms.float32)
|
|
|
|
net = NetWithLoss(Net())
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
reset_op_id()
|
|
|
|
_executor.compile(net, x, y, z, w, phase='train')
|
|
strategies = _executor._get_strategy(net)
|
|
expected_strategies = {'Default/network-Net/Cast-op0': [[8, 1]],
|
|
'Default/network-Net/Cast-op1': [[1, 8]],
|
|
'Default/network-Net/MatMul-op3': [[8, 1], [1, 1]],
|
|
'Default/network-Net/MatMul-op4': [[1, 1], [1, 8]],
|
|
'Default/network-Net/MatMul-op2': [[1, 8], [8, 1]]}
|
|
assert strategies == expected_strategies
|