forked from mindspore-Ecosystem/mindspore
173 lines
6.0 KiB
Python
173 lines
6.0 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
# ============================================================================
|
||
""" test Activations """
|
||
import functools
|
||
import numpy as np
|
||
|
||
import mindspore.nn as nn
|
||
from mindspore.ops import operations as P
|
||
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
||
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
|
||
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
|
||
from ....ops_common import convert
|
||
|
||
|
||
class SeqConvBnRelu(nn.Cell):
|
||
""" SeqConvBnRelu definition """
|
||
|
||
def __init__(self, in_ch, out_ch):
|
||
super(SeqConvBnRelu, self).__init__()
|
||
self.conv = nn.Conv2d(in_ch, out_ch, 3)
|
||
self.bn = nn.BatchNorm2d(out_ch)
|
||
self.relu = P.ReLU()
|
||
|
||
def construct(self, input_x):
|
||
return self.relu(self.bn(self.conv(input_x)))
|
||
|
||
|
||
test_case_reid_ops = [
|
||
('ReduceMax', {
|
||
'block': P.ReduceMax(keep_dims=False),
|
||
'desc_const': [(1,)],
|
||
'desc_inputs': [convert([32, 32], np.float16)],
|
||
'desc_bprop': [convert([32], np.float16)],
|
||
'skip': []}),
|
||
('ReduceMin', {
|
||
'block': P.ReduceMin(),
|
||
'desc_const': [(1,)],
|
||
'desc_inputs': [[32, 32]],
|
||
'desc_bprop': [[32]],
|
||
'skip': []}),
|
||
('ReduceMean', {
|
||
'block': P.ReduceMean(keep_dims=True),
|
||
'desc_const': [(1, 2)],
|
||
'desc_inputs': [[32, 4, 4]],
|
||
'desc_bprop': [[32, 1, 1]]}),
|
||
('Log', {
|
||
'block': P.Log(),
|
||
'desc_inputs': [[4, 128, 1024]],
|
||
'desc_bprop': [[4, 128, 1024]],
|
||
'skip': ['backward']}), # check backward error
|
||
('Reciprocal', {
|
||
'block': P.Reciprocal(),
|
||
'desc_inputs': [[4, 128, 1024]],
|
||
'desc_bprop': [[4, 128, 1024]],
|
||
'skip': ['backward']}),
|
||
('FloorDiv', {
|
||
'block': P.FloorDiv(),
|
||
'desc_inputs': [[4, 128, 1024], [4, 128, 1024]],
|
||
'desc_bprop': [[4, 128, 1024]]}),
|
||
('Sigmoid', {
|
||
'block': P.Sigmoid(),
|
||
'desc_inputs': [[4, 128, 1024]],
|
||
'desc_bprop': [[4, 128, 1024]]}),
|
||
('Softmax', {
|
||
'block': P.Softmax(),
|
||
'desc_inputs': [[1, 16]],
|
||
'desc_bprop': [[1, 16]],
|
||
'skip': ['backward']}), # check backward error
|
||
('Softmax', {
|
||
'block': P.Softmax(axis=(0, 1)),
|
||
'desc_inputs': [[1, 16]],
|
||
'desc_bprop': [[1, 16]],
|
||
'skip': ['backward']}),
|
||
('L2Normalize', {
|
||
'block': P.L2Normalize(),
|
||
'desc_inputs': [[4, 128, 1024]],
|
||
'desc_bprop': [[4, 128, 1024]]}),
|
||
('ReLU', {
|
||
'block': P.ReLU(),
|
||
'desc_inputs': [[64, 64, 112, 112]],
|
||
'desc_bprop': [[64, 64, 112, 112]]}),
|
||
('SeqConvBnRelu', {
|
||
'block': SeqConvBnRelu(3, 64),
|
||
'desc_inputs': [[64, 3, 112, 112]],
|
||
'desc_bprop': [[64, 64, 112, 112]]}),
|
||
('PReluCell', {
|
||
'block': nn.PReLU(1, [np.float32(0.25)]),
|
||
'desc_inputs': [[128, 64, 112, 112]],
|
||
'desc_bprop': [[128, 64, 112, 112]]}),
|
||
('PRelu', {
|
||
'block': P.PReLU(),
|
||
'desc_inputs': [[128, 64, 112, 112], [64,]],
|
||
'desc_bprop': [[128, 64, 112, 112]]}),
|
||
('Cos', {
|
||
'block': P.Cos(),
|
||
'desc_inputs': [[8, 16]],
|
||
'desc_bprop': [[8, 16]]}),
|
||
('ACos', {
|
||
'block': P.ACos(),
|
||
'desc_inputs': [[8, 16]],
|
||
'desc_bprop': [[8, 16]]}),
|
||
('Exp', {
|
||
'block': P.Exp(),
|
||
'desc_inputs': [[256, 8]],
|
||
'desc_bprop': [[256, 8]]}),
|
||
('Pow', {
|
||
'block': P.Pow(), # 输入有标量插件产生了段错误。
|
||
'desc_const': [2.0],
|
||
'desc_inputs': [[1, 512]],
|
||
'desc_bprop': [[1, 512]]}),
|
||
('LogicalNot', {
|
||
'block': P.LogicalNot(),
|
||
'desc_inputs': [convert([256], np.bool_)],
|
||
'desc_bprop': [[256]]}), # 自定义算子 input bool没转换,gongchen提单。
|
||
('Equal', {
|
||
'block': P.Equal(),
|
||
'desc_inputs': [convert([256], np.float16), convert([256], np.float16)],
|
||
'desc_bprop': [[256]]}),
|
||
('Greater', {
|
||
'block': P.Greater(),
|
||
'desc_inputs': [convert([256], np.float16), convert([256], np.float16)],
|
||
'desc_bprop': [[256]]}),
|
||
('Dropout', {
|
||
'block': nn.Dropout(),
|
||
'desc_inputs': [[1, 512, 7, 7]],
|
||
'desc_bprop': [[1, 512, 7, 7]]}), # 输入有标量插件产生了段错误。
|
||
('MatMul', {
|
||
'block': P.MatMul(),
|
||
'desc_inputs': [[64, 512], [512, 64]], # fp16不行。很有问题。
|
||
'desc_bprop': [[64, 64]]}),
|
||
('Maximum', {
|
||
'block': P.Maximum(),
|
||
'desc_inputs': [[64, 1], [64, 1]],
|
||
'desc_bprop': [[64, 1]]}),
|
||
]
|
||
|
||
test_case_lists = [test_case_reid_ops]
|
||
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
||
# use -k to select certain testcast
|
||
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
||
|
||
|
||
test_exec_case = filter(lambda x: 'skip' not in x[1] or
|
||
'exec' not in x[1]['skip'], test_case)
|
||
|
||
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
|
||
'backward' not in x[1]['skip'] and 'backward_exec'
|
||
not in x[1]['skip'], test_case)
|
||
|
||
|
||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||
def test_exec():
|
||
return test_exec_case
|
||
|
||
|
||
@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
|
||
def test_backward_exec():
|
||
return test_backward_exec_case
|