forked from mindspore-Ecosystem/mindspore
758 lines
24 KiB
Python
758 lines
24 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test nn ops """
|
|
import numpy as np
|
|
|
|
import mindspore
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops.operations import _grad_ops as G
|
|
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
|
from ..ut_filter import non_graph_engine
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
|
from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
|
import pipeline_for_verify_exception_for_case_by_case_config
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
|
|
def conv3x3(in_channels, out_channels, stride=1, padding=1):
|
|
"""3x3 convolution """
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
kernel_size=3, stride=stride, padding=padding)
|
|
|
|
|
|
def conv1x1(in_channels, out_channels, stride=1, padding=0):
|
|
"""1x1 convolution"""
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
kernel_size=1, stride=stride, padding=padding)
|
|
|
|
|
|
class ResidualBlock(nn.Cell):
|
|
"""
|
|
residual Block
|
|
"""
|
|
expansion = 4
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
stride=1,
|
|
down_sample=False):
|
|
super(ResidualBlock, self).__init__()
|
|
|
|
out_chls = out_channels // self.expansion
|
|
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
|
|
self.bn1 = nn.BatchNorm2d(out_chls)
|
|
|
|
self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=0)
|
|
self.bn2 = nn.BatchNorm2d(out_chls)
|
|
|
|
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
|
|
self.bn3 = nn.BatchNorm2d(out_channels)
|
|
|
|
self.relu = nn.ReLU()
|
|
self.downsample = down_sample
|
|
|
|
self.conv_down_sample = conv1x1(in_channels, out_channels,
|
|
stride=stride, padding=0)
|
|
self.bn_down_sample = nn.BatchNorm2d(out_channels)
|
|
self.add = P.TensorAdd()
|
|
|
|
def construct(self, x):
|
|
"""
|
|
:param x:
|
|
:return:
|
|
"""
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample:
|
|
identity = self.conv_down_sample(identity)
|
|
identity = self.bn_down_sample(identity)
|
|
|
|
out = self.add(out, identity)
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class VirtualLossGrad(PrimitiveWithInfer):
|
|
""" VirtualLossGrad definition """
|
|
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
"""init VirtualLossGrad"""
|
|
|
|
def __call__(self, x, out, dout):
|
|
raise NotImplementedError
|
|
|
|
def infer_shape(self, x_shape, out_shape, dout_shape):
|
|
return x_shape
|
|
|
|
def infer_dtype(self, x_dtype, out_dtype, dout_dtype):
|
|
return x_dtype
|
|
|
|
|
|
class VirtualLoss(PrimitiveWithInfer):
|
|
""" VirtualLoss definition """
|
|
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
"""init VirtualLoss"""
|
|
|
|
def __call__(self, x):
|
|
raise NotImplementedError
|
|
|
|
def get_bprop(self):
|
|
loss_grad = VirtualLossGrad()
|
|
|
|
def bprop(x, out, dout):
|
|
# pylint: disable=unused-argument
|
|
dx = loss_grad(x, out, dout)
|
|
return (dx,)
|
|
|
|
return bprop
|
|
|
|
def infer_shape(self, x_shape):
|
|
return []
|
|
|
|
def infer_dtype(self, x_dtype):
|
|
return x_dtype
|
|
|
|
|
|
class VirtualNetWithLoss(nn.Cell):
|
|
""" VirtualNetWithLoss definition """
|
|
|
|
def __init__(self, network):
|
|
super(VirtualNetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
predict = self.network(x)
|
|
return self.loss(predict)
|
|
|
|
|
|
class SoftMaxGrad(nn.Cell):
|
|
""" SoftMaxGrad definition """
|
|
|
|
def __init__(self, network):
|
|
super(SoftMaxGrad, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
return C.grad(self.network)(x)
|
|
|
|
|
|
class DropoutGrad(nn.Cell):
|
|
""" DropoutGrad definition """
|
|
|
|
def __init__(self, network):
|
|
super(DropoutGrad, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
return C.grad(self.network)(x)
|
|
|
|
|
|
class ScalarSummaryNet(nn.Cell):
|
|
""" ScalarSummaryNet definition """
|
|
|
|
def __init__(self):
|
|
super(ScalarSummaryNet, self).__init__()
|
|
self.summary = P.ScalarSummary()
|
|
|
|
def construct(self, scalar):
|
|
string_in = "bias_value"
|
|
out = self.summary(string_in, scalar)
|
|
return out
|
|
|
|
|
|
class L2NormalizeNet(nn.Cell):
|
|
""" L2NormalizeNet definition """
|
|
|
|
def __init__(self):
|
|
super(L2NormalizeNet, self).__init__()
|
|
self.l2_normalize = P.L2Normalize()
|
|
|
|
def construct(self, x):
|
|
out = self.l2_normalize(x)
|
|
return out
|
|
|
|
|
|
class HistogramSummaryNet(nn.Cell):
|
|
"""HistogramSummaryNet definition"""
|
|
|
|
def __init__(self):
|
|
super(HistogramSummaryNet, self).__init__()
|
|
self.summary = P.HistogramSummary()
|
|
|
|
def construct(self, tensor):
|
|
string_in = "wight_value"
|
|
out = self.summary(string_in, tensor)
|
|
return out
|
|
|
|
|
|
class FusedBatchNormGrad(nn.Cell):
|
|
""" FusedBatchNormGrad definition """
|
|
|
|
def __init__(self, network):
|
|
super(FusedBatchNormGrad, self).__init__()
|
|
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
|
self.network = network
|
|
|
|
def construct(self, inp, output_grad):
|
|
return self.grad(self.network)(inp, output_grad)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
""" NetWithLoss definition """
|
|
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = P.SmoothL1Loss()
|
|
self.network = network
|
|
|
|
def construct(self, x, label):
|
|
predict = self.network(x)
|
|
return self.loss(predict, label)
|
|
|
|
|
|
class Grad(nn.Cell):
|
|
""" GradWrap definition """
|
|
|
|
def __init__(self, network):
|
|
super(Grad, self).__init__()
|
|
self.network = network
|
|
self.network.set_train()
|
|
|
|
def construct(self, x, label):
|
|
return C.grad(self.network)(x, label)
|
|
|
|
|
|
class BatchnormNet(nn.Cell):
|
|
""" BatchnormNet definition """
|
|
|
|
def __init__(self):
|
|
super(BatchnormNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 4, kernel_size=8, stride=2, pad_mode="pad", padding=3)
|
|
self.bn1 = nn.BatchNorm2d(4)
|
|
self.flatten = P.Flatten()
|
|
self.weight = Parameter(Tensor(np.ones([64, 10], np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([10], np.float32)), name="bias")
|
|
self.fc = P.MatMul()
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.flatten(x)
|
|
x = self.biasAdd(self.fc(x, self.weight), self.bias)
|
|
return x
|
|
|
|
|
|
class NetWithLossClass(nn.Cell):
|
|
""" NetWithLossClass definition """
|
|
|
|
def __init__(self, network):
|
|
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
self.network = network
|
|
|
|
def construct(self, x, label):
|
|
predict = self.network(x)
|
|
return self.loss(predict, label)
|
|
|
|
|
|
class BlockNet(nn.Cell):
|
|
""" BlockNet definition """
|
|
|
|
def __init__(self):
|
|
super(BlockNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, pad_mode="pad", padding=3)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU()
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
|
|
self.block_down_sample = ResidualBlock(
|
|
64, 256, stride=1, down_sample=True
|
|
)
|
|
self.flatten = P.Flatten()
|
|
self.weight = Parameter(Tensor(np.ones([1024, 10]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
|
|
self.fc = P.MatMul()
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
return x
|
|
|
|
|
|
class Conv2dWithBiasNet(nn.Cell):
|
|
""" Conv2dWithBiasNet definition """
|
|
|
|
def __init__(self):
|
|
super(Conv2dWithBiasNet, self).__init__()
|
|
self.conv = nn.Conv2d(3, 10, 1, bias_init='zeros')
|
|
self.flatten = P.Flatten()
|
|
|
|
def construct(self, input_x):
|
|
return self.flatten(self.conv(input_x))
|
|
|
|
|
|
class Conv2dNativeNet(nn.Cell):
|
|
""" Conv2dNativeNet definition """
|
|
|
|
def __init__(self):
|
|
super(Conv2dNativeNet, self).__init__()
|
|
self.conv = P.DepthwiseConv2dNative(channel_multiplier=3, kernel_size=(3, 3))
|
|
self.flatten = P.Flatten()
|
|
channel_multipliers = 1
|
|
in_channels = 3
|
|
kernel_size = (3, 3)
|
|
self.weight = Parameter(initializer(
|
|
Tensor(np.ones([channel_multipliers, in_channels, *kernel_size], dtype=np.float32)),
|
|
[channel_multipliers, in_channels, *kernel_size]), name='weight')
|
|
|
|
def construct(self, input_x):
|
|
return self.flatten(self.conv(input_x, self.weight))
|
|
|
|
|
|
class StateNet(nn.Cell):
|
|
""" StateTestTensor definition """
|
|
|
|
def __init__(self):
|
|
super(StateNet, self).__init__()
|
|
weight = Tensor(np.ones([2, 1, 2, 2], np.float32))
|
|
self.s1 = Parameter(weight, name="s1")
|
|
self.s2 = Parameter(weight, name="s2")
|
|
self.sub = P.Sub()
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
self.assign = P.Assign()
|
|
|
|
def construct(self, x):
|
|
x = F.depend(x, self.assign(self.s1, x + self.s1))
|
|
self.s1 = self.sub(self.s1, x)
|
|
self.s2 = self.sub(self.s2, x)
|
|
return x
|
|
|
|
|
|
def test_conv2d_same_primitive():
|
|
class Conv2DSameNet(nn.Cell):
|
|
def __init__(self):
|
|
super(Conv2DSameNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
|
|
self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
|
|
|
|
def construct(self, x, y):
|
|
r1 = self.conv1(x)
|
|
r2 = self.conv2(y)
|
|
return (r1, r2)
|
|
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
|
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
|
net = Conv2DSameNet()
|
|
net(t1, t2)
|
|
|
|
|
|
class ComparisonNet(nn.Cell):
|
|
def __init__(self):
|
|
""" ComparisonNet definition """
|
|
super(ComparisonNet, self).__init__()
|
|
|
|
def construct(self, x, y):
|
|
ret = x <= y
|
|
return ret
|
|
|
|
|
|
def test_max_pool_with_arg_max():
|
|
class NetMaxPoolWithArgMax(nn.Cell):
|
|
def __init__(self):
|
|
""" ComparisonNet definition """
|
|
super(NetMaxPoolWithArgMax, self).__init__()
|
|
self.max_pool_with_arg_max = P.MaxPoolWithArgmax(padding="valid", ksize=2, strides=1)
|
|
|
|
def construct(self, x):
|
|
ret = self.max_pool_with_arg_max(x)
|
|
return ret
|
|
|
|
x = Tensor(np.ones([1, 1, 3, 3], np.float32))
|
|
net = NetMaxPoolWithArgMax()
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
ret = net(x)
|
|
print(ret)
|
|
|
|
|
|
class GradWrapUnfold(nn.Cell):
|
|
""" GradWrapUnfold definition """
|
|
|
|
def __init__(self, network):
|
|
super(GradWrapUnfold, self).__init__()
|
|
self.network = network
|
|
self.sens = Tensor(np.ones([1, 4, 2, 2], np.float32))
|
|
|
|
def construct(self, x):
|
|
return C.grad_all_with_sens(self.network)(x, self.sens)
|
|
|
|
|
|
class UnfoldNetValid(nn.Cell):
|
|
""" UnfoldNetValid definition """
|
|
|
|
def __init__(self):
|
|
super(UnfoldNetValid, self).__init__()
|
|
self.unfold = nn.Unfold(ksizes=[1, 2, 2, 1],
|
|
strides=[1, 1, 1, 1],
|
|
rates=[1, 1, 1, 1],
|
|
padding='VALID')
|
|
|
|
def construct(self, x):
|
|
return self.unfold(x)
|
|
|
|
|
|
class UnfoldNetSame(nn.Cell):
|
|
""" UnfoldNetSame definition """
|
|
|
|
def __init__(self):
|
|
super(UnfoldNetSame, self).__init__()
|
|
self.unfold = nn.Unfold(ksizes=[1, 2, 2, 1],
|
|
strides=[1, 1, 1, 1],
|
|
rates=[1, 1, 1, 1],
|
|
padding='SAME')
|
|
|
|
def construct(self, x):
|
|
return self.unfold(x)
|
|
|
|
|
|
class FlattenNet(nn.Cell):
|
|
""" FlattenNet definition """
|
|
|
|
def __init__(self):
|
|
super(FlattenNet, self).__init__()
|
|
self.flatten = P.Flatten()
|
|
|
|
def construct(self, x):
|
|
return self.flatten(x)
|
|
|
|
|
|
class PReLUNet(nn.Cell):
|
|
""" PReLUNet definition """
|
|
|
|
def __init__(self):
|
|
super(PReLUNet, self).__init__()
|
|
self.prelu = P.PReLU()
|
|
self.w = Tensor(np.ones(3, np.float32))
|
|
|
|
def construct(self, x):
|
|
return self.prelu(x, self.w)
|
|
|
|
|
|
class PReLUGradNet(nn.Cell):
|
|
""" PReLUGradNet definition """
|
|
|
|
def __init__(self):
|
|
super(PReLUGradNet, self).__init__()
|
|
self.prelu_grad = G.PReLUGrad()
|
|
|
|
def construct(self, dout, x, w):
|
|
return self.prelu_grad(dout, x, w)
|
|
|
|
|
|
class LRNNet(nn.Cell):
|
|
""" LRNNet definition """
|
|
|
|
def __init__(self):
|
|
super(LRNNet, self).__init__()
|
|
self.lrn = P.LRN()
|
|
|
|
def construct(self, x):
|
|
return self.lrn(x)
|
|
|
|
|
|
class LRNGradNet(nn.Cell):
|
|
""" LRNGradNet definition """
|
|
|
|
def __init__(self):
|
|
super(LRNGradNet, self).__init__()
|
|
self.lrn_grad = G.LRNGrad()
|
|
|
|
def construct(self, dout, x, out):
|
|
return self.lrn_grad(dout, x, out)
|
|
|
|
|
|
test_cases = [
|
|
('SoftMaxGrad', {
|
|
'block': SoftMaxGrad(VirtualNetWithLoss(P.Softmax())),
|
|
'desc_inputs': [[128, 32, 32, 64]],
|
|
'desc_bprop': [[128, 32, 32, 64]],
|
|
}),
|
|
('DropoutGrad', {
|
|
'block': DropoutGrad(VirtualNetWithLoss(nn.Dropout())),
|
|
'desc_inputs': [[128, 32, 32, 64]],
|
|
'desc_bprop': [[128, 32, 32, 64]],
|
|
}),
|
|
('ScalarSummary', {
|
|
'block': ScalarSummaryNet(),
|
|
'desc_inputs': [Tensor(2.2)],
|
|
}),
|
|
('L2Normalize', {
|
|
'block': L2NormalizeNet(),
|
|
'desc_inputs': [Tensor(np.array([[1.0, 2, 3], [4.0, 5, 6], [7.0, 8, 9]]), mindspore.float32)],
|
|
}),
|
|
('HistogramSummary', {
|
|
'block': HistogramSummaryNet(),
|
|
'desc_inputs': [[1, 2, 3]],
|
|
}),
|
|
('FusedBatchNormGrad', {
|
|
'block': FusedBatchNormGrad(nn.BatchNorm2d(num_features=512, eps=1e-5, momentum=0.1)),
|
|
'desc_inputs': [[64, 512, 7, 7], [64, 512, 7, 7]],
|
|
'desc_bprop': [[64, 512, 7, 7]],
|
|
}),
|
|
('BatchnormGrad', {
|
|
'block': Grad(NetWithLoss(BatchnormNet())),
|
|
'desc_inputs': [Tensor(np.ones([1, 3, 8, 8], np.float32)), Tensor(np.zeros([1, 10], np.float32))],
|
|
}),
|
|
('BlockGrad', {
|
|
'block': Grad(NetWithLossClass(BlockNet())),
|
|
'desc_inputs': [Tensor(np.ones([1, 3, 8, 8], np.float32)), Tensor(np.zeros([1, 64, 4, 4], np.float32))],
|
|
}),
|
|
('Conv2dWithBiasGrad', {
|
|
'block': Grad(NetWithLossClass(Conv2dWithBiasNet())),
|
|
'desc_inputs': [Tensor(np.ones([1, 3, 16, 16], np.float32)), Tensor(np.zeros([1, 2560], np.float32))],
|
|
}),
|
|
('Conv2dNativeGrad', {
|
|
'block': Grad(NetWithLossClass(Conv2dNativeNet())),
|
|
'desc_inputs': [Tensor(np.ones([1, 3, 16, 16], np.float32)), Tensor(np.zeros([1, 1764], np.float32))],
|
|
}),
|
|
('StateTest', {
|
|
'block': StateNet(),
|
|
'desc_inputs': [Tensor(np.ones([2, 1, 2, 2]).astype(np.float32))],
|
|
}),
|
|
('StateGrad', {
|
|
'block': Grad(NetWithLossClass(StateNet())),
|
|
'desc_inputs': [Tensor(np.ones([2, 1, 2, 2], np.float32)), Tensor(np.ones([2, 1, 2, 2], np.float32))],
|
|
}),
|
|
('ComparisonTest', {
|
|
'block': ComparisonNet(),
|
|
'desc_inputs': [Tensor(np.ones([6, 9, 10], np.int32)), Tensor(np.ones([6, 9, 10], np.int32))],
|
|
}),
|
|
('UnfoldValid', {
|
|
'block': UnfoldNetValid(),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 3, 3], np.float32))],
|
|
'desc_bprop': [Tensor(np.ones([1, 4, 2, 2], np.float32))],
|
|
'skip': ['backward']}),
|
|
('UnfoldSame', {
|
|
'block': UnfoldNetSame(),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 3, 3], np.float32))],
|
|
'desc_bprop': [Tensor(np.ones([1, 4, 3, 3], np.float32))],
|
|
'skip': ['backward']}),
|
|
('UnfoldGrad', {
|
|
'block': GradWrapUnfold(UnfoldNetValid()),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 3, 3], np.float32))],
|
|
'desc_bprop': [Tensor(np.ones([1, 4, 2, 2], np.float32))],
|
|
'skip': ['backward']}),
|
|
('LogSigmoid', {
|
|
'block': nn.LogSigmoid(),
|
|
'desc_inputs': [Tensor(np.array([1, 2, 3, 4]).astype(np.float32))],
|
|
'desc_bprop': [Tensor(np.array([1, 2, 3, 4]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
('ReduceLogSumExp', {
|
|
'block': nn.ReduceLogSumExp((0,), False),
|
|
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
('LGamma', {
|
|
'block': nn.LGamma(),
|
|
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
('FlattenNet', {
|
|
'block': FlattenNet(),
|
|
'desc_inputs': [Tensor(np.ones([1, 2, 3, 4], np.float32))],
|
|
}),
|
|
('PReLUNet', {
|
|
'block': PReLUNet(),
|
|
'desc_inputs': [Tensor(np.ones([1, 3, 4, 4], np.float32))],
|
|
}),
|
|
('PReLUGradNet', {
|
|
'block': PReLUGradNet(),
|
|
'desc_inputs': [Tensor(np.ones([1, 3, 4, 4], np.float32)),
|
|
Tensor(np.ones([1, 3, 4, 4], np.float32)),
|
|
Tensor(np.ones(3, np.float32))],
|
|
}),
|
|
('MatrixDiag', {
|
|
'block': nn.MatrixDiag(),
|
|
'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
|
|
'skip': ['backward']
|
|
}),
|
|
('MatrixDiagPart', {
|
|
'block': nn.MatrixDiagPart(),
|
|
'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32))],
|
|
'skip': ['backward']
|
|
}),
|
|
('MatrixSetDiag', {
|
|
'block': nn.MatrixSetDiag(),
|
|
'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)),
|
|
Tensor(np.array([1, 2]).astype(np.float32))],
|
|
'skip': ['backward']
|
|
}),
|
|
('LRNNet', {
|
|
'block': LRNNet(),
|
|
'desc_inputs': [Tensor(np.ones([1, 5, 4, 4], np.float32))],
|
|
}),
|
|
('LRNGradNet', {
|
|
'block': LRNGradNet(),
|
|
'desc_inputs': [Tensor(np.ones([1, 5, 4, 4], np.float32)),
|
|
Tensor(np.ones([1, 5, 4, 4], np.float32)),
|
|
Tensor(np.ones([1, 5, 4, 4], np.float32))],
|
|
}),
|
|
]
|
|
|
|
test_cases_for_verify_exception = [
|
|
('ApplyMomentum_Error', {
|
|
'block': (P.ApplyMomentum(), {'exception': TypeError}),
|
|
'desc_inputs': [[2], [128, 32, 32, 64], [128, 32, 32, 64], [128, 32, 32, 64], [128, 32, 32, 64]],
|
|
'desc_bprop': [[128, 32, 32, 64]],
|
|
'skip': ['backward']
|
|
}),
|
|
('Conv2d_ValueError_1', {
|
|
'block': (lambda _: P.Conv2D(3, 4, mode=-2.0), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('Conv2d_ValueError_2', {
|
|
'block': (lambda _: P.Conv2D(3, 4, mode=-2), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('MaxPoolWithArgmax_ValueError_1', {
|
|
'block': (lambda _: P.MaxPoolWithArgmax(padding='sane'), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('MaxPoolWithArgmax_ValueError_2', {
|
|
'block': (lambda _: P.MaxPoolWithArgmax(ksize='1'), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('MaxPoolWithArgmax_ValueError_3', {
|
|
'block': (lambda _: P.MaxPoolWithArgmax(ksize=-2), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('MaxPoolWithArgmax_ValueError_4', {
|
|
'block': (lambda _: P.MaxPoolWithArgmax(strides=-1), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('FusedBatchNorm_ValueError_1', {
|
|
'block': (lambda _: P.FusedBatchNorm(mode="1", epsilon=1e-5, momentum=0.1), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('FusedBatchNorm_ValueError_2', {
|
|
'block': (lambda _: P.FusedBatchNorm(mode=2, epsilon=1e-5, momentum=0.1), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('FusedBatchNorm_ValueError_3', {
|
|
'block': (lambda _: P.FusedBatchNorm(mode=0, epsilon=-1e-5, momentum=0.1), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('FusedBatchNorm_ValueError_4', {
|
|
'block': (lambda _: P.FusedBatchNorm(mode=0, epsilon=1e-5, momentum=-0.1), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('FusedBatchNorm_ValueError_5', {
|
|
'block': (lambda _: P.FusedBatchNorm(mode=1, epsilon=-0.001, momentum=0.0), {'exception': ValueError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('Softmax_ValueError_1', {
|
|
'block': (lambda _: P.Softmax("1"), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('Softmax_ValueError_2', {
|
|
'block': (lambda _: P.Softmax(1.1), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('Softmax_ValueError_3', {
|
|
'block': (lambda _: P.Softmax(axis="1"), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('DropoutGenMask_ValueError_1', {
|
|
'block': (lambda _: P.DropoutGenMask(Seed0="seed0"), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('DropoutGenMask_ValueError_2', {
|
|
'block': (lambda _: P.DropoutGenMask(Seed0=1.0), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('DropoutGenMask_ValueError_3', {
|
|
'block': (lambda _: P.DropoutGenMask(Seed1="seed1"), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('DropoutGenMask_ValueError_4', {
|
|
'block': (lambda _: P.DropoutGenMask(Seed1=2.0), {'exception': TypeError}),
|
|
'desc_inputs': [0],
|
|
}),
|
|
('MaxPool2d_ValueError_1', {
|
|
'block': (nn.MaxPool2d(kernel_size=120, stride=1, pad_mode="valid"), {'exception': ValueError}),
|
|
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
|
}),
|
|
('MaxPool2d_ValueError_2', {
|
|
'block': (
|
|
lambda _: nn.MaxPool2d(kernel_size=120, stride=True, pad_mode="valid"),
|
|
{'exception': TypeError},
|
|
),
|
|
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
|
}),
|
|
('MaxPool2d_ValueError_3', {
|
|
'block': (
|
|
lambda _: nn.MaxPool2d(kernel_size=3, stride=True, pad_mode="valid"),
|
|
{'exception': TypeError},
|
|
),
|
|
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
|
}),
|
|
('ReduceLogsumexp_TypeError_1', {
|
|
'block': (
|
|
lambda _: nn.ReduceLogSumExp(axis=(0,), keep_dims=2),
|
|
{'exception': TypeError},
|
|
),
|
|
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
|
|
}),
|
|
('ReduceLogsumexp_TypeError_2', {
|
|
'block': (
|
|
lambda _: nn.ReduceLogSumExp(axis=1.2, keep_dims=True),
|
|
{'exception': TypeError},
|
|
),
|
|
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
|
|
}),
|
|
]
|
|
|
|
|
|
@non_graph_engine
|
|
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
|
def test_compile():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
return test_cases
|
|
|
|
|
|
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
|
|
def test_check_exception():
|
|
return test_cases_for_verify_exception
|