forked from mindspore-Ecosystem/mindspore
191 lines
9.4 KiB
Python
Executable File
191 lines
9.4 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""train resnet."""
|
|
import os
|
|
import random
|
|
import argparse
|
|
import numpy as np
|
|
from mindspore import context
|
|
from mindspore import Tensor
|
|
from mindspore import dataset as de
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.train.model import Model, ParallelMode
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
import mindspore.nn as nn
|
|
import mindspore.common.initializer as weight_init
|
|
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
|
|
parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
|
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
|
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
|
parser.add_argument('--parameter_server', type=bool, default=False, help='Run parameter server train')
|
|
args_opt = parser.parse_args()
|
|
|
|
random.seed(1)
|
|
np.random.seed(1)
|
|
de.config.set_seed(1)
|
|
|
|
if args_opt.net == "resnet50":
|
|
from src.resnet import resnet50 as resnet
|
|
if args_opt.dataset == "cifar10":
|
|
from src.config import config1 as config
|
|
from src.dataset import create_dataset1 as create_dataset
|
|
else:
|
|
from src.config import config2 as config
|
|
from src.dataset import create_dataset2 as create_dataset
|
|
elif args_opt.net == "resnet101":
|
|
from src.resnet import resnet101 as resnet
|
|
from src.config import config3 as config
|
|
from src.dataset import create_dataset3 as create_dataset
|
|
else:
|
|
from src.resnet import se_resnet50 as resnet
|
|
from src.config import config4 as config
|
|
from src.dataset import create_dataset4 as create_dataset
|
|
|
|
|
|
if __name__ == '__main__':
|
|
target = args_opt.device_target
|
|
ckpt_save_dir = config.save_checkpoint_path
|
|
|
|
# init context
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
|
|
if args_opt.run_distribute:
|
|
if target == "Ascend":
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
mirror_mean=True)
|
|
if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
|
|
else:
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
|
|
init()
|
|
# GPU target
|
|
else:
|
|
init("nccl")
|
|
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
mirror_mean=True)
|
|
if args_opt.net == "resnet50":
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
|
|
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
|
|
|
|
# create dataset
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
|
|
batch_size=config.batch_size, target=target)
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
# define net
|
|
net = resnet(class_num=config.class_num)
|
|
if args_opt.parameter_server:
|
|
net.set_param_ps()
|
|
|
|
# init weight
|
|
if args_opt.pre_trained:
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
load_param_into_net(net, param_dict)
|
|
else:
|
|
for _, cell in net.cells_and_names():
|
|
if isinstance(cell, nn.Conv2d):
|
|
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
|
cell.weight.shape,
|
|
cell.weight.dtype)
|
|
if isinstance(cell, nn.Dense):
|
|
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
|
cell.weight.shape,
|
|
cell.weight.dtype)
|
|
|
|
# init lr
|
|
if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
|
|
lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
|
|
warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
|
|
lr_decay_mode=config.lr_decay_mode)
|
|
else:
|
|
lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
|
|
config.pretrain_epoch_size * step_size)
|
|
lr = Tensor(lr)
|
|
|
|
# define opt
|
|
decayed_params = []
|
|
no_decayed_params = []
|
|
for param in net.trainable_params():
|
|
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
|
|
decayed_params.append(param)
|
|
else:
|
|
no_decayed_params.append(param)
|
|
|
|
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
|
{'params': no_decayed_params},
|
|
{'order_params': net.trainable_params()}]
|
|
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
|
|
# define loss, model
|
|
if target == "Ascend":
|
|
if args_opt.dataset == "imagenet2012":
|
|
if not config.use_label_smooth:
|
|
config.label_smooth_factor = 0.0
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
|
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
else:
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
|
amp_level="O2", keep_batchnorm_fp32=False)
|
|
else:
|
|
# GPU target
|
|
if args_opt.dataset == "imagenet2012":
|
|
if not config.use_label_smooth:
|
|
config.label_smooth_factor = 0.0
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
|
|
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
else:
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
|
|
num_classes=config.class_num)
|
|
|
|
if args_opt.net == "resnet101" or args_opt.net == "resnet50":
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
|
|
config.loss_scale)
|
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
# Mixed precision
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
|
amp_level="O2", keep_batchnorm_fp32=True)
|
|
else:
|
|
## fp32 training
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
|
|
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
|
|
|
# define callbacks
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
loss_cb = LossMonitor()
|
|
cb = [time_cb, loss_cb]
|
|
if config.save_checkpoint:
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
|
|
cb += [ckpt_cb]
|
|
|
|
# train model
|
|
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
|
|
dataset_sink_mode=(not args_opt.parameter_server))
|