forked from mindspore-Ecosystem/mindspore
279 lines
12 KiB
Python
279 lines
12 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Train mobilenetV2 on ImageNet."""
|
|
|
|
import os
|
|
import time
|
|
import argparse
|
|
import random
|
|
import numpy as np
|
|
|
|
from mindspore import context
|
|
from mindspore import Tensor
|
|
from mindspore import nn
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.nn.loss.loss import _Loss
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import functional as F
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.train.model import Model, ParallelMode
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.communication.management import init, get_group_size, get_rank
|
|
import mindspore.dataset.engine as de
|
|
|
|
from src.dataset import create_dataset
|
|
from src.lr_generator import get_lr
|
|
from src.config import config_gpu, config_ascend
|
|
from src.mobilenetV2 import mobilenet_v2
|
|
|
|
random.seed(1)
|
|
np.random.seed(1)
|
|
de.config.set_seed(1)
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
|
parser.add_argument('--device_target', type=str, default=None, help='run device_target')
|
|
args_opt = parser.parse_args()
|
|
|
|
if args_opt.device_target == "Ascend":
|
|
device_id = int(os.getenv('DEVICE_ID', '0'))
|
|
rank_id = int(os.getenv('RANK_ID', '0'))
|
|
rank_size = int(os.getenv('RANK_SIZE', '1'))
|
|
run_distribute = rank_size > 1
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="Ascend",
|
|
device_id=device_id, save_graphs=False)
|
|
elif args_opt.device_target == "GPU":
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="GPU",
|
|
save_graphs=False)
|
|
init("nccl")
|
|
context.set_auto_parallel_context(device_num=get_group_size(),
|
|
parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
mirror_mean=True)
|
|
else:
|
|
raise ValueError("Unsupported device target.")
|
|
|
|
|
|
class CrossEntropyWithLabelSmooth(_Loss):
|
|
"""
|
|
CrossEntropyWith LabelSmooth.
|
|
|
|
Args:
|
|
smooth_factor (float): smooth factor, default=0.
|
|
num_classes (int): num classes
|
|
|
|
Returns:
|
|
None.
|
|
|
|
Examples:
|
|
>>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
|
|
"""
|
|
|
|
def __init__(self, smooth_factor=0., num_classes=1000):
|
|
super(CrossEntropyWithLabelSmooth, self).__init__()
|
|
self.onehot = P.OneHot()
|
|
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
|
self.off_value = Tensor(1.0 * smooth_factor /
|
|
(num_classes - 1), mstype.float32)
|
|
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
|
self.mean = P.ReduceMean(False)
|
|
self.cast = P.Cast()
|
|
|
|
def construct(self, logit, label):
|
|
one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
|
|
self.on_value, self.off_value)
|
|
out_loss = self.ce(logit, one_hot_label)
|
|
out_loss = self.mean(out_loss, 0)
|
|
return out_loss
|
|
|
|
|
|
class Monitor(Callback):
|
|
"""
|
|
Monitor loss and time.
|
|
|
|
Args:
|
|
lr_init (numpy array): train lr
|
|
|
|
Returns:
|
|
None
|
|
|
|
Examples:
|
|
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
|
|
"""
|
|
|
|
def __init__(self, lr_init=None):
|
|
super(Monitor, self).__init__()
|
|
self.lr_init = lr_init
|
|
self.lr_init_len = len(lr_init)
|
|
|
|
def epoch_begin(self, run_context):
|
|
self.losses = []
|
|
self.epoch_time = time.time()
|
|
|
|
def epoch_end(self, run_context):
|
|
cb_params = run_context.original_args()
|
|
|
|
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
|
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
|
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
|
|
per_step_mseconds,
|
|
np.mean(self.losses)))
|
|
|
|
def step_begin(self, run_context):
|
|
self.step_time = time.time()
|
|
|
|
def step_end(self, run_context):
|
|
cb_params = run_context.original_args()
|
|
step_mseconds = (time.time() - self.step_time) * 1000
|
|
step_loss = cb_params.net_outputs
|
|
|
|
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
|
step_loss = step_loss[0]
|
|
if isinstance(step_loss, Tensor):
|
|
step_loss = np.mean(step_loss.asnumpy())
|
|
|
|
self.losses.append(step_loss)
|
|
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
|
|
|
|
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
|
|
cb_params.cur_epoch_num -
|
|
1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
|
|
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if args_opt.device_target == "GPU":
|
|
# train on gpu
|
|
print("train args: ", args_opt)
|
|
print("cfg: ", config_gpu)
|
|
|
|
# define network
|
|
net = mobilenet_v2(num_classes=config_gpu.num_classes, device_target="GPU")
|
|
# define loss
|
|
if config_gpu.label_smooth > 0:
|
|
loss = CrossEntropyWithLabelSmooth(smooth_factor=config_gpu.label_smooth,
|
|
num_classes=config_gpu.num_classes)
|
|
else:
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
|
# define dataset
|
|
epoch_size = config_gpu.epoch_size
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
do_train=True,
|
|
config=config_gpu,
|
|
device_target=args_opt.device_target,
|
|
repeat_num=1,
|
|
batch_size=config_gpu.batch_size)
|
|
step_size = dataset.get_dataset_size()
|
|
# resume
|
|
if args_opt.pre_trained:
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
load_param_into_net(net, param_dict)
|
|
|
|
# get learning rate
|
|
loss_scale = FixedLossScaleManager(
|
|
config_gpu.loss_scale, drop_overflow_update=False)
|
|
lr = Tensor(get_lr(global_step=0,
|
|
lr_init=0,
|
|
lr_end=0,
|
|
lr_max=config_gpu.lr,
|
|
warmup_epochs=config_gpu.warmup_epochs,
|
|
total_epochs=epoch_size,
|
|
steps_per_epoch=step_size))
|
|
|
|
# define optimization
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum,
|
|
config_gpu.weight_decay, config_gpu.loss_scale)
|
|
# define model
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
|
|
|
|
print("============== Starting Training ==============")
|
|
cb = [Monitor(lr_init=lr.asnumpy())]
|
|
ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
|
|
if config_gpu.save_checkpoint:
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
|
|
keep_checkpoint_max=config_gpu.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
|
|
cb += [ckpt_cb]
|
|
# begin train
|
|
model.train(epoch_size, dataset, callbacks=cb)
|
|
print("============== End Training ==============")
|
|
elif args_opt.device_target == "Ascend":
|
|
# train on ascend
|
|
print("train args: ", args_opt, "\ncfg: ", config_ascend,
|
|
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
|
|
|
|
if run_distribute:
|
|
context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
parameter_broadcast=True, mirror_mean=True)
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
|
|
init()
|
|
|
|
epoch_size = config_ascend.epoch_size
|
|
net = mobilenet_v2(num_classes=config_ascend.num_classes, device_target="Ascend")
|
|
net.to_float(mstype.float16)
|
|
for _, cell in net.cells_and_names():
|
|
if isinstance(cell, nn.Dense):
|
|
cell.to_float(mstype.float32)
|
|
if config_ascend.label_smooth > 0:
|
|
loss = CrossEntropyWithLabelSmooth(
|
|
smooth_factor=config_ascend.label_smooth, num_classes=config_ascend.num_classes)
|
|
else:
|
|
loss = SoftmaxCrossEntropyWithLogits(
|
|
is_grad=False, sparse=True, reduction='mean')
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
do_train=True,
|
|
config=config_ascend,
|
|
device_target=args_opt.device_target,
|
|
repeat_num=1,
|
|
batch_size=config_ascend.batch_size)
|
|
step_size = dataset.get_dataset_size()
|
|
if args_opt.pre_trained:
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
load_param_into_net(net, param_dict)
|
|
|
|
loss_scale = FixedLossScaleManager(
|
|
config_ascend.loss_scale, drop_overflow_update=False)
|
|
lr = Tensor(get_lr(global_step=0,
|
|
lr_init=0,
|
|
lr_end=0,
|
|
lr_max=config_ascend.lr,
|
|
warmup_epochs=config_ascend.warmup_epochs,
|
|
total_epochs=epoch_size,
|
|
steps_per_epoch=step_size))
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_ascend.momentum,
|
|
config_ascend.weight_decay, config_ascend.loss_scale)
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt,
|
|
loss_scale_manager=loss_scale)
|
|
|
|
cb = None
|
|
if rank_id == 0:
|
|
cb = [Monitor(lr_init=lr.asnumpy())]
|
|
if config_ascend.save_checkpoint:
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
|
|
keep_checkpoint_max=config_ascend.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(
|
|
prefix="mobilenetV2", directory=config_ascend.save_checkpoint_path, config=config_ck)
|
|
cb += [ckpt_cb]
|
|
model.train(epoch_size, dataset, callbacks=cb)
|
|
else:
|
|
raise ValueError("Unsupported device_target.")
|