mindspore/model_zoo/official/cv/mobilenetv2
zhaoting 37f78ec3e7 mobilenetv2 mobilenetv3 readme normalize, delete mobilenetv3 ascend 2020-08-20 10:46:31 +08:00
..
scripts mobilenetv2 mobilenetv3 readme normalize, delete mobilenetv3 ascend 2020-08-20 10:46:31 +08:00
src mobilenetv2 mobilenetv3 readme normalize, delete mobilenetv3 ascend 2020-08-20 10:46:31 +08:00
Readme.md mobilenetv2 mobilenetv3 readme normalize, delete mobilenetv3 ascend 2020-08-20 10:46:31 +08:00
eval.py mobilenetv2 mobilenetv3 readme normalize, delete mobilenetv3 ascend 2020-08-20 10:46:31 +08:00
train.py mobilenetv2 mobilenetv3 readme normalize, delete mobilenetv3 ascend 2020-08-20 10:46:31 +08:00

Readme.md

Contents

MobileNetV2 Description

MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019.

Paper Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019.

Model architecture

The overall network architecture of MobileNetV2 is show below:

Link

Dataset

Dataset used: imagenet

  • Dataset size: ~125G, 1.2W colorful images in 1000 classes
    • Train: 120G, 1.2W images
    • Test: 5G, 50000 images
  • Data format: RGB images.
    • Note: Data will be processed in src/dataset.py

Features

Mixed Precision(Ascend)

The mixed precision training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.

Environment Requirements

Script description

Script and sample code

├── MobileNetV2        
  ├── Readme.md     # descriptions about MobileNetV2                 
  ├── scripts 
     ├──run_train.sh   # shell script for train               
     ├──run_eval.sh    # shell script for evaluation                
  ├── src                              
     ├──config.py      # parameter configuration               
     ├──dataset.py     # creating dataset
     ├──launch.py      # start python script
     ├──lr_generator.py     # learning rate config                            
     ├──mobilenetV2.py      # MobileNetV2 architecture
  ├── train.py      # training script
  ├── eval.py       #  evaluation script

Training process

Usage

You can start training using python or shell scripts. The usage of shell scripts as follows:

  • Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH]
  • GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]

Launch

# training example
  python:
      Ascend: python train.py --dataset_path ~/imagenet/train/ --device_targe Ascend
      GPU: python train.py --dataset_path ~/imagenet/train/ --device_targe GPU

  shell:
      Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ mobilenet_199.ckpt
      GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/

Result

Training result will be stored in the example path. Checkpoints will be stored at . /checkpoint by default, and training log will be redirected to ./train/train.log like followings.

epoch: [  0/200], step:[  624/  625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
epoch: [  1/200], step:[  624/  625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
epoch time: 138331.250, per step time: 221.330, avg loss: 3.917

Eval process

Usage

You can start training using python or shell scripts. The usage of shell scripts as follows:

  • Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
  • GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH]

Launch

# infer example
  python:
      Ascend: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe Ascend
      GPU: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe GPU

  shell:
      Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
      GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt

checkpoint can be produced in training process.

Result

Inference result will be stored in the example path, you can find result like the followings in val.log.

result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt

Model description

Performance

Training Performance

Parameters MobilenetV2
Model Version large
Resource Ascend 910, cpu:2.60GHz 56cores, memory:314G NV SMX2 V100-32G
uploaded Date 05/06/2020 05/06/2020
MindSpore Version 0.3.0 0.3.0
Dataset ImageNet ImageNet
Training Parameters src/config.py src/config.py
Optimizer Momentum Momentum
Loss Function SoftmaxCrossEntropy SoftmaxCrossEntropy
outputs
Loss 1.913
Accuracy ACC1[77.09%] ACC5[92.57%]
Total time
Params (M)
Checkpoint for Fine tuning
Model for inference

Inference Performance

Parameters
Model Version V1
Resource Huawei 910 NV SMX2 V100-32G Huawei 310
uploaded Date 05/06/2020 05/22/2020
MindSpore Version 0.2.0 0.2.0 0.2.0
Dataset ImageNet, 1.2W ImageNet, 1.2W ImageNet, 1.2W
batch_size 130(8P)
outputs
Accuracy ACC1[72.07%] ACC5[90.90%]
Speed
Total time
Model for inference

Description of Random Situation

In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.

ModelZoo Homepage

Please check the official homepage.