mindspore/tests/ut/cpp/parallel/step_parallel_test.cc

539 lines
21 KiB
C++

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common_test.h"
#include "frontend/parallel/step_parallel.h"
#include "frontend/parallel/graph_util/generate_graph.h"
#include "common/py_func_graph_fetcher.h"
#include "debug/draw.h"
#include "frontend/operator/ops.h"
#include "pipeline/jit/static_analysis/static_analysis.h"
namespace mindspore {
namespace parallel {
extern size_t TOTAL_OPS;
class TestStepParallel : public UT::Common {
public:
TestStepParallel() {}
void SetUp();
void TearDown() {}
};
void TestStepParallel::SetUp() { UT::InitPythonPath(); }
void Init_Device_Manager() {
std::vector<int32_t> dev_list;
for (int32_t i = 0; i < 20; i++) {
dev_list.push_back(i);
}
std::vector<int32_t> stage_map;
stage_map.push_back(16);
stage_map.push_back(4);
int32_t local_dev = 0;
// create a new g_device_manager
g_device_manager = std::make_shared<DeviceManager>();
g_device_manager->Init(dev_list, local_dev, stage_map, "hccl");
}
CNodePtr Make_Node(Shape x, Shape y, Shape out, int condition = 0) {
FuncGraphPtr func_graph = std::make_shared<FuncGraph>();
ParameterPtr param1 = func_graph->add_parameter();
ParameterPtr param2 = func_graph->add_parameter();
param1->set_name("x");
param2->set_name("y");
BaseShapePtr shape1 = std::make_shared<abstract::Shape>(x);
BaseShapePtr shape2 = std::make_shared<abstract::Shape>(y);
BaseShapePtr shape3 = std::make_shared<abstract::Shape>(out);
std::shared_ptr<tensor::Tensor> inputs_x = std::make_shared<tensor::Tensor>(kNumberTypeInt32, x);
std::shared_ptr<tensor::Tensor> inputs_y = std::make_shared<tensor::Tensor>(kNumberTypeInt32, y);
std::shared_ptr<tensor::Tensor> inputs_out = std::make_shared<tensor::Tensor>(kNumberTypeInt32, out);
AbstractBasePtr abstract1 = abstract::FromValue(inputs_x, true);
AbstractBasePtr abstract2 = abstract::FromValue(inputs_y, true);
AbstractBasePtr abstract3 = abstract::FromValue(inputs_out, true);
switch (condition) {
case 0: {
abstract1->set_shape(shape1);
abstract2->set_shape(shape2);
abstract3->set_shape(shape3);
param1->set_abstract(abstract1);
param2->set_abstract(abstract2);
break;
}
case 1: {
abstract1->set_shape(nullptr);
param1->set_abstract(abstract1);
param2->set_abstract(abstract2);
break;
}
case 2: {
abstract1->set_shape(shape1);
abstract2->set_shape(shape2);
param1->set_abstract(abstract1);
param2->set_abstract(abstract2);
abstract3 = abstract::FromValue(1, false);
break;
}
case 3: {
std::vector<BaseShapePtr> shape_o = {std::make_shared<abstract::Shape>(x), std::make_shared<abstract::Shape>(y)};
BaseShapePtr shape4 = std::make_shared<abstract::TupleShape>(shape_o);
abstract1->set_shape(shape1);
abstract2->set_shape(shape2);
abstract3->set_shape(shape4);
param1->set_abstract(abstract1);
param2->set_abstract(abstract2);
break;
}
default:
MS_LOG(INFO) << "Do Nothing!";
}
std::vector<AnfNodePtr> inputs;
inputs.push_back(NewValueNode(prim::kPrimMatMul));
inputs.push_back(param1);
inputs.push_back(param2);
CNodePtr node = func_graph->NewCNode(inputs);
node->set_abstract(abstract3);
return node;
}
FuncGraphManagerPtr Make_Manager(int condition = 0) {
Shape inputs_x = {64, 32};
Shape inputs_y = {32, 64};
Shape inputs_z = {64, 128};
Shape outputs_1 = {64, 64};
Shape outputs_2 = {64, 128};
FuncGraphPtr func_graph = std::make_shared<FuncGraph>();
ParameterPtr param1 = func_graph->add_parameter();
ParameterPtr param2 = func_graph->add_parameter();
ParameterPtr param3 = func_graph->add_parameter();
std::shared_ptr<tensor::Tensor> inputs_x_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, inputs_x);
std::shared_ptr<tensor::Tensor> inputs_y_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, inputs_y);
std::shared_ptr<tensor::Tensor> inputs_z_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, inputs_z);
std::shared_ptr<tensor::Tensor> inputs_out1_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, outputs_1);
std::shared_ptr<tensor::Tensor> inputs_out2_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, outputs_2);
AbstractBasePtr abstract_x = abstract::FromValue(inputs_x_dim, true);
AbstractBasePtr abstract_y = abstract::FromValue(inputs_y_dim, true);
AbstractBasePtr abstract_z = abstract::FromValue(inputs_z_dim, true);
AbstractBasePtr abstract_out1 = abstract::FromValue(inputs_out1_dim, true);
AbstractBasePtr abstract_out2 = abstract::FromValue(inputs_out2_dim, true);
param1->set_abstract(abstract_x);
param2->set_abstract(abstract_y);
param3->set_abstract(abstract_z);
std::vector<int> v1 = {2, 2};
std::vector<int> v2 = {2, 4};
std::vector<ValuePtr> elements = {MakeValue(v1), MakeValue(v2)};
ValueTuplePtr var = std::make_shared<ValueTuple>(elements);
std::vector<AnfNodePtr> inputs;
inputs.push_back(NewValueNode(prim::kPrimMatMul));
inputs.push_back(param1);
inputs.push_back(param2);
CNodePtr node1 = func_graph->NewCNode(inputs);
node1->set_in_forward_flag(true);
node1->set_abstract(abstract_out1);
PrimitivePtr prim1 = node1->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
ValuePtr transpose_a = MakeValue(false);
ValuePtr transpose_b = MakeValue(false);
prim1->AddAttr("transpose_a", transpose_a);
prim1->AddAttr("transpose_b", transpose_b);
prim1->AddAttr("instance_name", MakeValue("matmul1"));
prim1->AddAttr("strategy", var);
inputs.clear();
std::vector<int> v3 = {2, 2};
std::vector<int> v4 = {2, 4};
std::vector<ValuePtr> elements2 = {MakeValue(v3), MakeValue(v4)};
ValueTuplePtr var2 = std::make_shared<ValueTuple>(elements2);
inputs.push_back(NewValueNode(prim::kPrimMatMul));
inputs.push_back(node1);
inputs.push_back(param3);
CNodePtr node2 = func_graph->NewCNode(inputs);
node2->set_in_forward_flag(true);
node2->set_abstract(abstract_out2);
inputs.clear();
inputs.push_back(NewValueNode(prim::kPrimReturn));
inputs.push_back(node2);
CNodePtr cnode_return = func_graph->NewCNode(inputs);
cnode_return->set_in_forward_flag(true);
func_graph->set_return(cnode_return);
PrimitivePtr prim2 = node2->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
prim2->AddAttr("transpose_a", transpose_a);
prim2->AddAttr("transpose_b", transpose_b);
prim2->AddAttr("instance_name", MakeValue("matmul2"));
prim2->AddAttr("strategy", var2);
switch (condition) {
case 1: {
prim1->set_attr("strategy", MakeValue(0));
break;
}
case 2: {
std::vector<ValuePtr> elements_t = {MakeValue(0)};
ValueTuplePtr var_t = std::make_shared<ValueTuple>(elements_t);
prim1->set_attr("strategy", var_t);
break;
}
case 3: {
std::vector<int> vt1 = {2, 4};
std::vector<int> vt2 = {2, 4};
std::vector<ValuePtr> elements_t2 = {MakeValue(vt1), MakeValue(vt2)};
ValueTuplePtr var_t2 = std::make_shared<ValueTuple>(elements_t2);
prim1->set_attr("strategy", var_t2);
break;
}
}
std::vector<FuncGraphPtr> func_graphs{func_graph};
FuncGraphManagerPtr manager = std::make_shared<FuncGraphManager>(func_graphs, true);
manager->Init();
return manager;
}
TEST_F(TestStepParallel, GetPythonPath1) {
OperatorName operator_name = "AllReduce";
const std::string expect = "mindspore.ops.operations";
auto temp = parallel::GetOpPythonPath(operator_name);
ASSERT_EQ(temp, expect);
}
TEST_F(TestStepParallel, GetPythonPath2) {
OperatorName operator_name = "TensorAdd";
const std::string expect = "mindspore.ops.operations";
auto temp = parallel::GetOpPythonPath(operator_name);
ASSERT_EQ(temp, expect);
}
TEST_F(TestStepParallel, ExtractStrategy) {
Dimensions v1 = {2, 2};
Dimensions v2 = {4, 4};
std::unordered_map<std::string, ValuePtr> attrs;
// stage
ValuePtr val1 = MakeValue(v1);
ValuePtr val2 = MakeValue(v2);
std::vector<ValuePtr> elements = {val1, val2};
ValueTuplePtr strategy_tuple = std::make_shared<ValueTuple>(elements);
attrs["strategy"] = strategy_tuple;
std::vector<Dimensions> strategy_expect = {v1, v2};
StrategyPtr strategy = ExtractStrategy(attrs);
std::vector<Dimensions> strategy_test = strategy->GetInputDim();
ASSERT_EQ(strategy_expect, strategy_test);
}
TEST_F(TestStepParallel, ExtractShape) {
Shape inputs_x_dims = {64, 32};
Shape inputs_y_dims = {32, 64};
Shape outputs_dims = {64, 64};
CNodePtr node = Make_Node(inputs_x_dims, inputs_y_dims, outputs_dims, 4);
EXPECT_THROW({ ExtractShape(node); }, std::runtime_error);
}
TEST_F(TestStepParallel, ExtractShape1) {
Shape inputs_x_dims = {64, 32};
Shape inputs_y_dims = {32, 64};
Shape outputs_dims = {64, 64};
CNodePtr node = Make_Node(inputs_x_dims, inputs_y_dims, outputs_dims);
std::vector<Shapes> shape_test = ExtractShape(node);
Shapes inputs_shape = std::vector<Shape>{inputs_x_dims, inputs_y_dims};
Shapes outputs_shape = std::vector<Shape>{outputs_dims};
std::vector<Shapes> shape_expect = {inputs_shape, outputs_shape};
ASSERT_EQ(shape_test, shape_expect);
}
TEST_F(TestStepParallel, ExtractShape2) {
Shape inputs_x_dims = {64, 32};
Shape inputs_y_dims = {32, 64};
Shape outputs_dims = {64, 64};
CNodePtr node = Make_Node(inputs_x_dims, inputs_y_dims, outputs_dims, 1);
EXPECT_THROW({ ExtractShape(node); }, std::runtime_error);
}
TEST_F(TestStepParallel, ExtractShape3) {
Shape inputs_x_dims = {64, 32};
Shape inputs_y_dims = {32, 64};
Shape outputs_dims = {64, 64};
CNodePtr node = Make_Node(inputs_x_dims, inputs_y_dims, outputs_dims, 3);
Shapes inputs_shape = std::vector<Shape>{inputs_x_dims, inputs_y_dims};
std::vector<Shapes> shape_expect = {inputs_shape, inputs_shape};
std::vector<Shapes> shape_test = ExtractShape(node);
ASSERT_EQ(shape_test, shape_expect);
}
TEST_F(TestStepParallel, ExtractShape4) {
Shape inputs_x_dims = {64, 32};
Shape inputs_y_dims = {32, 64};
Shape outputs_dims = {64, 64};
CNodePtr node = Make_Node(inputs_x_dims, inputs_y_dims, outputs_dims, 2);
Shapes inputs_shape = std::vector<Shape>{inputs_x_dims, inputs_y_dims};
EXPECT_THROW({ ExtractShape(node); }, std::runtime_error);
}
TEST_F(TestStepParallel, CreatOpInstance) {
ValuePtr attr0_value = MakeValue(REDUCE_OP_SUM);
ValuePtr attr1_value = MakeValue("0-1-2");
Attr attr0 = std::make_pair("op", attr0_value);
Attr attr1 = std::make_pair("group", attr1_value);
OperatorAttrs attrs = {attr0, attr1};
OperatorName op_name = "AllReduce";
OperatorParams operator_param;
OperatorArgs args = std::make_pair(attrs, operator_param);
auto op_instance = CreatOpInstance(args.first, op_name, "test");
ASSERT_TRUE(op_instance);
PrimitivePyPtr allreduce_ptr = dyn_cast<PrimitivePy>(op_instance);
ASSERT_TRUE(allreduce_ptr);
if (nullptr != allreduce_ptr) {
MS_LOG(INFO) << "Get PrimitivePyPtr: " << allreduce_ptr->name();
if (!allreduce_ptr->HasComputeFunction()) {
MS_LOG(EXCEPTION) << "" << allreduce_ptr->name() << "'s compute function is not implemented";
}
std::vector<py::object> arglist;
(void)std::transform(attrs.begin(), attrs.end(), std::back_inserter(arglist),
[](Attr attr) { return ValuePtrToPyData(attr.second); });
py::object allreduce_pyobj = parse::python_adapter::CallPyFn(
"mindspore.parallel._utils", "_get_python_op", "AllReduce", "mindspore.ops.operations", "test", arglist);
py::dict opAttr = py::getattr(allreduce_pyobj, "attrs");
std::unordered_map<std::string, ValuePtr> attributes{};
for (auto item : opAttr) {
if (!py::isinstance<py::str>(item.first)) {
MS_LOG(EXCEPTION) << "type error in py dict convert";
}
std::string name = py::cast<std::string>(item.first);
MS_LOG(INFO) << "Attr name: " << name;
ValuePtr converted_ret;
if (name == "op") {
parse::ConvertData(py::cast<py::object>(item.second), &converted_ret);
ASSERT_EQ(converted_ret->ToString(), "sum");
} else {
if (name == "group") {
parse::ConvertData(py::cast<py::object>(item.second), &converted_ret);
ASSERT_EQ(converted_ret->ToString(), "0-1-2");
} else if (name == "fusion") {
parse::ConvertData(py::cast<py::object>(item.second), &converted_ret);
ASSERT_EQ(converted_ret->ToString(), "0");
} else if (name == "instance_name") {
parse::ConvertData(py::cast<py::object>(item.second), &converted_ret);
ASSERT_EQ(converted_ret->ToString(), "test");
} else if (name == "index") {
parse::ConvertData(py::cast<py::object>(item.second), &converted_ret);
ASSERT_EQ(converted_ret->ToString(), "0");
} else {
MS_LOG(EXCEPTION) << "Test failed";
}
}
attributes.emplace(name, converted_ret);
}
}
}
TEST_F(TestStepParallel, CreatOpInstance1) {
OperatorAttrs attrs;
OperatorName op_name = "ABC";
OperatorParams operator_param;
OperatorArgs args = std::make_pair(attrs, operator_param);
EXPECT_THROW({ CreatOpInstance(args.first, op_name, "test"); }, std::runtime_error);
}
TEST_F(TestStepParallel, OperatorInstance) {
Init_Device_Manager();
// creat attrs and prim
PrimitivePtr prim = NewValueNode(prim::kPrimMatMul)->value()->cast<PrimitivePtr>();
ValuePtr transpose_a = MakeValue(false);
ValuePtr transpose_b = MakeValue(false);
prim->set_attr("transpose_a", transpose_a);
prim->set_attr("transpose_b", transpose_b);
auto attrs = prim->attrs();
// creat strategy
std::vector<Dimensions> strategy = {{2, 2}, {2, 4}};
StrategyPtr strategyPtr = parallel::NewStrategy(0, strategy);
// creat shape
Shapes inputs_shape = std::vector<Shape>{{64, 32}, {32, 64}};
Shapes outputs_shape = std::vector<Shape>{{64, 64}};
std::vector<Shapes> shape = {inputs_shape, outputs_shape};
TOTAL_OPS = 0;
OperatorInfoPtr matmul_info = OperatorInstance(prim, attrs, shape);
matmul_info->Init(strategyPtr);
std::string name_expect = "MatMulInfo00";
std::string name_test = matmul_info->name();
ASSERT_EQ(name_expect, name_test);
}
TEST_F(TestStepParallel, ExtractInformation) {
Init_Device_Manager();
FuncGraphManagerPtr manager = Make_Manager();
FuncGraphSet graphs = manager->func_graphs();
FuncGraphPtr graph = *graphs.begin();
auto ret = graph->get_return();
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
ExtractInformation(all_nodes);
}
TEST_F(TestStepParallel, ExtractInformation2) {
Init_Device_Manager();
FuncGraphManagerPtr manager = Make_Manager(2);
FuncGraphSet graphs = manager->func_graphs();
FuncGraphPtr graph = *graphs.begin();
auto ret = graph->get_return();
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
EXPECT_THROW({ ExtractInformation(all_nodes); }, std::runtime_error);
}
TEST_F(TestStepParallel, ExtractInformation3) {
Init_Device_Manager();
FuncGraphManagerPtr manager = Make_Manager(3);
FuncGraphSet graphs = manager->func_graphs();
FuncGraphPtr graph = *graphs.begin();
auto ret = graph->get_return();
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
EXPECT_THROW({ ExtractInformation(all_nodes); }, std::runtime_error);
}
TEST_F(TestStepParallel, ForwardCommunication1) {
Init_Device_Manager();
ValuePtr attr0_value = MakeValue(REDUCE_OP_SUM);
ValuePtr attr1_value = MakeValue("0-1-2");
Attr attr0 = std::make_pair("op", attr0_value);
Attr attr1 = std::make_pair("group", attr1_value);
OperatorAttrs attrs = {attr0, attr1};
OperatorName op_name = "AllReduce";
OperatorParams operator_param;
OperatorArgs args = std::make_pair(attrs, operator_param);
Operator op = std::make_pair(op_name, args);
OperatorVector op_list = {op, op};
FuncGraphManagerPtr manager = Make_Manager();
FuncGraphSet graphs = manager->func_graphs();
FuncGraphPtr graph = *graphs.begin();
auto ret = graph->get_return();
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
ExtractInformation(all_nodes);
for (auto &node : all_nodes) {
if (!node->isa<CNode>()) {
continue;
}
auto cnode = node->cast<CNodePtr>();
FuncGraphPtr func_graph = node->func_graph();
PrimitivePtr prim = cnode->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
if (prim->name() == "MatMul") {
ForwardCommunication(op_list, cnode);
draw::Draw("./forwardcommunication.dot", func_graph);
}
}
AnfNodeSet after_nodes = manager->all_nodes();
for (auto &node : after_nodes) {
if (!node->isa<CNode>()) {
continue;
}
auto &inputs = node->cast<CNodePtr>()->inputs();
PrimitivePtr prim = inputs[0]->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
if (prim->name() == "return" || prim->name() == "MatMul") {
if (!inputs[1]->isa<Parameter>()) {
CNodePtr pre_node = inputs[1]->cast<CNodePtr>();
PrimitivePtr pre_prim = pre_node->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
CNodePtr pre_node2 = pre_node->input(1)->cast<CNodePtr>();
PrimitivePtr pre_prim2 = pre_node2->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
ASSERT_EQ("AllReduce", pre_prim->name());
ASSERT_EQ("AllReduce", pre_prim2->name());
}
}
}
}
TEST_F(TestStepParallel, ForwardCommunication2) {
OperatorVector op_list;
FuncGraphManagerPtr manager = Make_Manager();
FuncGraphSet graphs = manager->func_graphs();
FuncGraphPtr graph = *graphs.begin();
auto ret = graph->get_return();
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
ExtractInformation(all_nodes);
for (auto &node : all_nodes) {
if (!node->isa<CNode>()) {
continue;
}
auto cnode = node->cast<CNodePtr>();
FuncGraphPtr func_graph = node->func_graph();
func_graph->set_manager(nullptr);
PrimitivePtr prim = GetValueNode<PrimitivePtr>(cnode->input(0));
if (prim->name() == "MatMul") {
EXPECT_THROW({ ForwardCommunication(op_list, cnode); }, std::runtime_error);
break;
}
}
}
TEST_F(TestStepParallel, ForwardCommunication3) {
OperatorVector op_list;
FuncGraphManagerPtr manager = Make_Manager();
FuncGraphSet graphs = manager->func_graphs();
FuncGraphPtr graph = *graphs.begin();
auto ret = graph->get_return();
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
ExtractInformation(all_nodes);
for (auto &node : all_nodes) {
if (!node->isa<CNode>()) {
continue;
}
auto cnode = node->cast<CNodePtr>();
FuncGraphPtr func_graph = node->func_graph();
PrimitivePtr prim = GetValueNode<PrimitivePtr>(cnode->input(0));
if (prim->name() == "MatMul") {
OperatorAttrs attrs;
OperatorParams operator_param;
OperatorArgs args = std::make_pair(attrs, operator_param);
Operator op = std::make_pair("ABC", args);
OperatorVector op_list = {op};
EXPECT_THROW({ ForwardCommunication(op_list, cnode); }, std::runtime_error);
break;
}
}
}
TEST_F(TestStepParallel, GetTensorInLayout) {
Init_Device_Manager();
// creat attrs and prim
FuncGraphPtr func_graph = std::make_shared<FuncGraph>();
Shape inputs_x_dims = {64, 32};
Shape inputs_y_dims = {32, 64};
Shape outputs_dims = {64, 64};
CNodePtr node = Make_Node(inputs_x_dims, inputs_y_dims, outputs_dims);
std::vector<AnfNodePtr> inputs(node->inputs());
CNodePtr node1 = func_graph->NewCNode(inputs);
PrimitivePtr prim = node1->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
ValuePtr transpose_a = MakeValue(false);
ValuePtr transpose_b = MakeValue(false);
prim->set_attr("transpose_a", transpose_a);
prim->set_attr("transpose_b", transpose_b);
auto attrs = prim->attrs();
// creat strategy
std::vector<Dimensions> strategy = {{2, 2}, {2, 4}};
StrategyPtr strategyPtr = parallel::NewStrategy(0, strategy);
// creat shape
Shapes inputs_shape = std::vector<Shape>{{64, 32}, {32, 64}};
Shapes outputs_shape = std::vector<Shape>{{64, 64}};
std::vector<Shapes> shape = {inputs_shape, outputs_shape};
OperatorInfoPtr matmul_info = OperatorInstance(prim, attrs, shape);
matmul_info->Init(strategyPtr);
node->SetUserData<OperatorInfo>(matmul_info);
OperatorInfoPtr distribute_operator_pre = node->GetUserData<OperatorInfo>();
TensorLayout tensorlayout_e;
std::vector<int32_t> array = {64, 64};
TensorLayout tensorlayout = GetTensorInLayout(node1, prim, distribute_operator_pre);
std::vector<int32_t> tensor_shape_test = tensorlayout.tensor_shape().array();
ASSERT_EQ(array, tensor_shape_test);
}
} // namespace parallel
} // namespace mindspore