forked from mindspore-Ecosystem/mindspore
61 lines
2.1 KiB
C++
61 lines
2.1 KiB
C++
/**
|
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "common/common.h"
|
|
#include "common/cvop_common.h"
|
|
#include "minddata/dataset/kernels/image/random_crop_op.h"
|
|
#include "utils/log_adapter.h"
|
|
|
|
using namespace mindspore::dataset;
|
|
using mindspore::MsLogLevel::INFO;
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
using mindspore::LogStream;
|
|
|
|
class MindDataTestRandomCropOp : public UT::CVOP::CVOpCommon {
|
|
protected:
|
|
MindDataTestRandomCropOp() : CVOpCommon() {}
|
|
|
|
std::shared_ptr<Tensor> output_tensor_;
|
|
};
|
|
|
|
TEST_F(MindDataTestRandomCropOp, TestOp1) {
|
|
MS_LOG(INFO) << "Doing testRandomCrop.";
|
|
// Crop params
|
|
unsigned int crop_height = 128;
|
|
unsigned int crop_width = 128;
|
|
std::unique_ptr<RandomCropOp> op(new RandomCropOp(crop_height, crop_width, 0, 0, 0, 0, BorderType::kConstant, false));
|
|
EXPECT_TRUE(op->OneToOne());
|
|
Status s = op->Compute(input_tensor_, &output_tensor_);
|
|
size_t actual = 0;
|
|
if (s == Status::OK()) {
|
|
actual = output_tensor_->shape()[0] * output_tensor_->shape()[1] * output_tensor_->shape()[2];
|
|
}
|
|
EXPECT_EQ(actual, crop_height * crop_width * 3);
|
|
EXPECT_EQ(s, Status::OK());
|
|
}
|
|
|
|
TEST_F(MindDataTestRandomCropOp, TestOp2) {
|
|
MS_LOG(INFO) << "Doing testRandomCrop.";
|
|
// Crop params
|
|
unsigned int crop_height = 1280;
|
|
unsigned int crop_width = 1280;
|
|
std::unique_ptr<RandomCropOp> op(
|
|
new RandomCropOp(crop_height, crop_width, 513, 513, 513, 513, BorderType::kConstant, false));
|
|
EXPECT_TRUE(op->OneToOne());
|
|
Status s = op->Compute(input_tensor_, &output_tensor_);
|
|
EXPECT_EQ(true, s.IsOk());
|
|
MS_LOG(INFO) << "testRandomCrop end.";
|
|
}
|