mindspore/tests/ut/cpp/dataset/random_crop_op_test.cc

61 lines
2.1 KiB
C++

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "common/cvop_common.h"
#include "minddata/dataset/kernels/image/random_crop_op.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestRandomCropOp : public UT::CVOP::CVOpCommon {
protected:
MindDataTestRandomCropOp() : CVOpCommon() {}
std::shared_ptr<Tensor> output_tensor_;
};
TEST_F(MindDataTestRandomCropOp, TestOp1) {
MS_LOG(INFO) << "Doing testRandomCrop.";
// Crop params
unsigned int crop_height = 128;
unsigned int crop_width = 128;
std::unique_ptr<RandomCropOp> op(new RandomCropOp(crop_height, crop_width, 0, 0, 0, 0, BorderType::kConstant, false));
EXPECT_TRUE(op->OneToOne());
Status s = op->Compute(input_tensor_, &output_tensor_);
size_t actual = 0;
if (s == Status::OK()) {
actual = output_tensor_->shape()[0] * output_tensor_->shape()[1] * output_tensor_->shape()[2];
}
EXPECT_EQ(actual, crop_height * crop_width * 3);
EXPECT_EQ(s, Status::OK());
}
TEST_F(MindDataTestRandomCropOp, TestOp2) {
MS_LOG(INFO) << "Doing testRandomCrop.";
// Crop params
unsigned int crop_height = 1280;
unsigned int crop_width = 1280;
std::unique_ptr<RandomCropOp> op(
new RandomCropOp(crop_height, crop_width, 513, 513, 513, 513, BorderType::kConstant, false));
EXPECT_TRUE(op->OneToOne());
Status s = op->Compute(input_tensor_, &output_tensor_);
EXPECT_EQ(true, s.IsOk());
MS_LOG(INFO) << "testRandomCrop end.";
}