mindspore/tests/ut/cpp/dataset/cache_op_test.cc

576 lines
18 KiB
C++

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include "minddata/dataset/core/client.h"
#include "minddata/dataset/engine/cache/cache_client.h"
#include "minddata/dataset/engine/execution_tree.h"
#include "minddata/dataset/engine/datasetops/cache_op.h"
#include "minddata/dataset/engine/datasetops/cache_lookup_op.h"
#include "minddata/dataset/engine/datasetops/cache_merge_op.h"
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "utils/log_adapter.h"
#include "minddata/dataset/util/storage_container.h" // lint !e322
#include "minddata/dataset/engine/datasetops/source/random_data_op.h"
#include "minddata/dataset/engine/data_schema.h"
using namespace mindspore::dataset;
using mindspore::LogStream;
using mindspore::dataset::CacheClient;
using mindspore::dataset::TaskGroup;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::MsLogLevel::INFO;
class MindDataTestCacheOp : public UT::DatasetOpTesting {
public:
void SetUp() override {
DatasetOpTesting::SetUp();
GlobalInit();
}
};
TEST_F(MindDataTestCacheOp, TestCacheServer) {
Status rc;
CacheClient myClient(1, 0, true); // use arbitrary session of 1, size of 0, spilling is true
// cksum value of 1 for CreateCache here...normally you do not directly create a cache and the cksum arg is generated.
rc = myClient.CreateCache(1, true);
EXPECT_TRUE(rc.IsOk());
std::cout << myClient << std::endl;
// Create a schema using the C api's
int32_t rank = 0; // not used
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
// 2 columns. First column is an "image" 640,480,3
TensorShape c1Shape({640, 480, 3});
ColDescriptor c1("image", DataType(DataType::DE_INT8), TensorImpl::kFlexible,
rank, // not used
&c1Shape);
// Column 2 will just be a scalar label number
TensorShape c2Shape({}); // empty shape is a 1-value scalar Tensor
ColDescriptor c2("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, rank, &c2Shape);
testSchema->AddColumn(c1);
testSchema->AddColumn(c2);
std::unordered_map<std::string, int32_t> map;
rc = testSchema->GetColumnNameMap(&map);
EXPECT_TRUE(rc.IsOk());
// Test the CacheSchema api
rc = myClient.CacheSchema(map);
EXPECT_TRUE(rc.IsOk());
// Create a tensor, take a snapshot and restore it back, and compare.
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_UINT64));
t->SetItemAt<uint64_t>({0, 0}, 1);
t->SetItemAt<uint64_t>({0, 1}, 2);
t->SetItemAt<uint64_t>({0, 2}, 3);
t->SetItemAt<uint64_t>({1, 0}, 4);
t->SetItemAt<uint64_t>({1, 1}, 5);
t->SetItemAt<uint64_t>({1, 2}, 6);
std::cout << *t << std::endl;
TensorTable tbl;
TensorRow row;
row.push_back(t);
int64_t row_id;
rc = myClient.WriteRow(row, &row_id);
EXPECT_TRUE(rc.IsOk());
// Switch off build phase.
rc = myClient.BuildPhaseDone();
EXPECT_TRUE(rc.IsOk());
// Now restore from cache.
row.clear();
rc = myClient.GetRows({row_id}, &tbl);
row = tbl.front();
EXPECT_TRUE(rc.IsOk());
auto r = row.front();
std::cout << *r << std::endl;
// Compare
bool cmp = (*t == *r);
EXPECT_TRUE(cmp);
// Get back the schema and verify
std::unordered_map<std::string, int32_t> map_out;
rc = myClient.FetchSchema(&map_out);
EXPECT_TRUE(rc.IsOk());
cmp = (map_out == map);
EXPECT_TRUE(cmp);
// Test Purge and Destroy
rc = myClient.PurgeCache();
EXPECT_TRUE(rc.IsOk());
rc = myClient.DestroyCache();
EXPECT_TRUE(rc.IsOk());
}
TEST_F(MindDataTestCacheOp, TestConcurrencyRequest) {
// Clear the rc of the master thread if any
(void)TaskManager::GetMasterThreadRc();
TaskGroup vg;
Status rc;
CacheClient myClient(1, 1, true); // use arbitrary session of 1, size 1, spilling is true
// cksum value of 1 for CreateCache here...normally you do not directly create a cache and the cksum arg is generated.
rc = myClient.CreateCache(1, true);
EXPECT_TRUE(rc.IsOk());
std::cout << myClient << std::endl;
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_UINT64));
t->SetItemAt<uint64_t>({0, 0}, 1);
t->SetItemAt<uint64_t>({0, 1}, 2);
t->SetItemAt<uint64_t>({0, 2}, 3);
t->SetItemAt<uint64_t>({1, 0}, 4);
t->SetItemAt<uint64_t>({1, 1}, 5);
t->SetItemAt<uint64_t>({1, 2}, 6);
TensorTable tbl;
TensorRow row;
row.push_back(t);
// Cache tensor row t 5000 times using 10 threads.
for (auto k = 0; k < 10; ++k) {
Status vg_rc = vg.CreateAsyncTask("Test agent", [&myClient, &row]() -> Status {
TaskManager::FindMe()->Post();
for (auto i = 0; i < 500; i++) {
RETURN_IF_NOT_OK(myClient.WriteRow(row));
}
return Status::OK();
});
EXPECT_TRUE(vg_rc.IsOk());
}
ASSERT_TRUE(vg.join_all().IsOk());
ASSERT_TRUE(vg.GetTaskErrorIfAny().IsOk());
rc = myClient.BuildPhaseDone();
ASSERT_TRUE(rc.IsOk());
// Get statistics from the server.
CacheClient::ServiceStat stat{};
rc = myClient.GetStat(&stat);
ASSERT_TRUE(rc.IsOk());
std::cout << stat.min_row_id << ":" << stat.max_row_id << ":" << stat.num_mem_cached << ":" << stat.num_disk_cached
<< "\n";
// Expect there are 5000 rows there.
EXPECT_EQ(5000, stat.max_row_id - stat.min_row_id + 1);
// Get them all back using row id and compare with tensor t.
for (auto i = stat.min_row_id; i <= stat.max_row_id; ++i) {
tbl.clear();
row.clear();
rc = myClient.GetRows({i}, &tbl);
EXPECT_TRUE(rc.IsOk());
row = tbl.front();
auto r = row.front();
bool cmp = (*t == *r);
EXPECT_TRUE(cmp);
}
rc = myClient.DestroyCache();
EXPECT_TRUE(rc.IsOk());
}
// Simple test with a repeated cache op over random data producer
//
// RepeatOp
// |
// CacheOp
// |
// RandomDataOp
//
TEST_F(MindDataTestCacheOp, TestRandomDataCache1) {
Status rc;
int32_t rank = 0; // not used
MS_LOG(INFO) << "UT test TestRandomDataCache1";
// Start with an empty execution tree
auto myTree = std::make_shared<ExecutionTree>();
// Create a schema using the C api's
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
// 2 columns. First column is an "image" 640,480,3
TensorShape c1Shape({640, 480, 3});
ColDescriptor c1("image", DataType(DataType::DE_INT8), TensorImpl::kFlexible,
rank, // not used
&c1Shape);
// Column 2 will just be a scalar label number
TensorShape c2Shape({}); // empty shape is a 1-value scalar Tensor
ColDescriptor c2("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, rank, &c2Shape);
testSchema->AddColumn(c1);
testSchema->AddColumn(c2);
// RandomDataOp
std::shared_ptr<RandomDataOp> myRandomDataOp;
rc = RandomDataOp::Builder()
.SetRowsPerBuffer(4)
.SetNumWorkers(4)
.SetDataSchema(std::move(testSchema))
.SetTotalRows(50) // 50 samples for now
.Build(&myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
// CacheOp
// size of 0, spilling is true
std::shared_ptr<CacheClient> myClient = std::make_shared<CacheClient>(1, 0, true);
std::shared_ptr<CacheOp> myCacheOp;
int64_t num_samples = 0;
int64_t start_index = 0;
auto seq_sampler = std::make_shared<SequentialSampler>(num_samples, start_index);
rc = CacheOp::Builder()
.SetNumWorkers(5)
.SetClient(myClient)
.SetRowsPerBuffer(4)
.SetSampler(std::move(seq_sampler))
.Build(&myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myCacheOp);
EXPECT_TRUE(rc.IsOk());
// RepeatOp
uint32_t numRepeats = 4;
std::shared_ptr<RepeatOp> myRepeatOp;
rc = RepeatOp::Builder(numRepeats).Build(&myRepeatOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
// Assign tree relations and root
rc = myRepeatOp->AddChild(myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myCacheOp->AddChild(myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssignRoot(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration";
rc = myTree->Prepare();
EXPECT_TRUE(rc.IsOk());
// quick check to see what tree looks like
std::ostringstream ss;
ss << *myTree; // some funny const error if I try to write directly to ms log stream
MS_LOG(INFO) << "Here's the tree:\n" << ss.str();
std::cout << *myClient << std::endl;
rc = myTree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator dI(myTree);
TensorRow tensorList;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
int rowCount = 0;
while (!tensorList.empty()) {
// Don't display these rows, just count them
MS_LOG(INFO) << "Row fetched #: " << rowCount;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
rowCount++;
}
ASSERT_EQ(rowCount, 200);
rc = myClient->DestroyCache();
EXPECT_TRUE(rc.IsOk());
}
//// Simple test with a repeated cache op over random data producer.
//// This one will exceed memory and require a spill.
////
//// RepeatOp
//// |
//// CacheOp
//// |
//// RandomDataOp
////
TEST_F(MindDataTestCacheOp, TestRandomDataCacheSpill) {
Status rc;
int32_t rank = 0; // not used
MS_LOG(INFO) << "UT test TestRandomDataCacheSpill";
// Start with an empty execution tree
auto myTree = std::make_shared<ExecutionTree>();
// Create a schema using the C api's
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
// 2 columns. First column is an "image" 640,480,3
TensorShape c1Shape({640, 480, 3});
ColDescriptor c1("image", DataType(DataType::DE_INT8), TensorImpl::kFlexible,
rank, // not used
&c1Shape);
// Column 2 will just be a scalar label number
TensorShape c2Shape({}); // empty shape is a 1-value scalar Tensor
ColDescriptor c2("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, rank, &c2Shape);
testSchema->AddColumn(c1);
testSchema->AddColumn(c2);
// RandomDataOp
std::shared_ptr<RandomDataOp> myRandomDataOp;
rc = RandomDataOp::Builder()
.SetRowsPerBuffer(2)
.SetNumWorkers(4)
.SetDataSchema(std::move(testSchema))
.SetTotalRows(10)
.Build(&myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
// CacheOp
int64_t num_samples = 0;
int64_t start_index = 0;
auto seq_sampler = std::make_shared<SequentialSampler>(num_samples, start_index);
std::shared_ptr<CacheClient> myClient = std::make_shared<CacheClient>(1, 4, true);
std::shared_ptr<CacheOp> myCacheOp;
rc = CacheOp::Builder()
.SetNumWorkers(4)
.SetClient(myClient)
.SetRowsPerBuffer(3)
.SetSampler(std::move(seq_sampler))
.Build(&myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myCacheOp);
EXPECT_TRUE(rc.IsOk());
// RepeatOp
uint32_t numRepeats = 4;
std::shared_ptr<RepeatOp> myRepeatOp;
rc = RepeatOp::Builder(numRepeats).Build(&myRepeatOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
// Assign tree relations and root
rc = myRepeatOp->AddChild(myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myCacheOp->AddChild(myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssignRoot(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration";
rc = myTree->Prepare();
EXPECT_TRUE(rc.IsOk());
std::cout << *myClient << std::endl;
rc = myTree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator dI(myTree);
TensorRow tensorList;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
int rowCount = 0;
while (!tensorList.empty()) {
// Don't display these rows, just count them
MS_LOG(INFO) << "Row fetched #: " << rowCount;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
rowCount++;
}
ASSERT_EQ(rowCount, 40);
rc = myClient->DestroyCache();
EXPECT_TRUE(rc.IsOk());
}
TEST_F(MindDataTestCacheOp, TestImageFolderCacheMerge) {
Status rc;
int64_t num_samples = 0;
int64_t start_index = 0;
auto seq_sampler = std::make_shared<SequentialSampler>(num_samples, start_index);
std::shared_ptr<CacheClient> myClient = std::make_shared<CacheClient>(1, 0, true);
// In a mappable dataset, it uses a complex interactions of cache lookup op and cache merge op.
// Rather than manually build this, the way to do it is to choose the position of the cache in the tree by
// adding a CacheOp. Then, the tree prepare code will drive a transform that will remove the CacheOp and
// replace it with the required tree structures for cache lookup op and cache merge op.
std::shared_ptr<CacheOp> myCacheOp;
rc = CacheOp::Builder()
.SetNumWorkers(4)
.SetClient(myClient)
.SetRowsPerBuffer(3)
.Build(&myCacheOp);
std::shared_ptr<ImageFolderOp> so;
ImageFolderOp::Builder builder;
builder.SetSampler(std::move(seq_sampler))
.SetOpConnectorSize(3)
.SetNumWorkers(3)
.SetRowsPerBuffer(2)
.SetExtensions({".jpg", ".JPEG"})
.SetRecursive(true)
.SetImageFolderDir(datasets_root_path_ + "/testPK/data");
rc = builder.Build(&so);
EXPECT_TRUE(rc.IsOk());
// RepeatOp
uint32_t numRepeats = 4;
std::shared_ptr<RepeatOp> myRepeatOp;
rc = RepeatOp::Builder(numRepeats).Build(&myRepeatOp);
EXPECT_TRUE(rc.IsOk());
auto myTree = std::make_shared<ExecutionTree>();
rc = myTree->AssociateNode(so);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssignRoot(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
rc = myRepeatOp->AddChild(myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myCacheOp->AddChild(so);
EXPECT_TRUE(rc.IsOk());
rc = myTree->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = myTree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator dI(myTree);
TensorRow tensorList;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
int rowCount = 0;
while (!tensorList.empty()) {
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
if (rc.IsError()) {
std::cout << rc << std::endl;
break;
}
rowCount++;
}
ASSERT_EQ(rowCount, 176);
std::cout << "Row count : " << rowCount << std::endl;
rc = myClient->DestroyCache();
EXPECT_TRUE(rc.IsOk());
}
//// Simple test with a repeated cache op over random data producer.
//// The difference in this one is that you do not add the sampler to the cache op directly.
//// Instead, the sampler is added as part of the leaf op construction. Then, the prepare
//// phase will pull this up from the leaf and into the cache.
//// It removes the sampler from the leaf op, which doesn't make sense there anyway for
//// the RandomDataOp which doesn't support sampling without a cache.
////
//// RepeatOp
//// |
//// CacheOp
//// |
//// RandomDataOp
////
TEST_F(MindDataTestCacheOp, TestCacheInheritSampler) {
Status rc;
int32_t rank = 0; // not used
MS_LOG(INFO) << "UT test TestCacheInheritSampler";
int64_t num_samples = 0;
int64_t start_index = 0;
auto seq_sampler = std::make_shared<SequentialSampler>(num_samples, start_index);
// Start with an empty execution tree
auto myTree = std::make_shared<ExecutionTree>();
// Create a schema using the C api's
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
// 2 columns. First column is an "image" 640,480,3
TensorShape c1Shape({640, 480, 3});
ColDescriptor c1("image", DataType(DataType::DE_INT8), TensorImpl::kFlexible,
rank, // not used
&c1Shape);
// Column 2 will just be a scalar label number
TensorShape c2Shape({}); // empty shape is a 1-value scalar Tensor
ColDescriptor c2("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, rank, &c2Shape);
testSchema->AddColumn(c1);
testSchema->AddColumn(c2);
// RandomDataOp
std::shared_ptr<RandomDataOp> myRandomDataOp;
rc = RandomDataOp::Builder()
.SetRowsPerBuffer(2)
.SetNumWorkers(4)
.SetDataSchema(std::move(testSchema))
.SetTotalRows(10)
.SetSampler(std::move(seq_sampler))
.Build(&myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
// CacheOp
std::shared_ptr<CacheClient> myClient = std::make_shared<CacheClient>(1, 4, true);
std::shared_ptr<CacheOp> myCacheOp;
rc = CacheOp::Builder().SetNumWorkers(4).SetClient(myClient).SetRowsPerBuffer(3).Build(&myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myCacheOp);
EXPECT_TRUE(rc.IsOk());
// RepeatOp
uint32_t numRepeats = 4;
std::shared_ptr<RepeatOp> myRepeatOp;
rc = RepeatOp::Builder(numRepeats).Build(&myRepeatOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssociateNode(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
// Assign tree relations and root
rc = myRepeatOp->AddChild(myCacheOp);
EXPECT_TRUE(rc.IsOk());
rc = myCacheOp->AddChild(myRandomDataOp);
EXPECT_TRUE(rc.IsOk());
rc = myTree->AssignRoot(myRepeatOp);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration";
rc = myTree->Prepare();
EXPECT_TRUE(rc.IsOk());
std::cout << *myClient << std::endl;
rc = myTree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator dI(myTree);
TensorRow tensorList;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
int rowCount = 0;
while (!tensorList.empty()) {
// Don't display these rows, just count them
MS_LOG(INFO) << "Row fetched #: " << rowCount;
rc = dI.FetchNextTensorRow(&tensorList);
EXPECT_TRUE(rc.IsOk());
rowCount++;
}
ASSERT_EQ(rowCount, 40);
rc = myClient->DestroyCache();
EXPECT_TRUE(rc.IsOk());
}