forked from mindspore-Ecosystem/mindspore
caozhou b1189cd118 | ||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
eval.py | ||
train.py |
README.md
Contents
- EfficientNet-B0 Description
- Model Architecture
- Dataset
- Environment Requirements
- Quick Start
- Script Description
- Model Description
- ModelZoo Homepage
EfficientNet-B0 Description
Paper: Mingxing Tan, Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 2019.
Model architecture
The overall network architecture of EfficientNet-B0 is show below:
Dataset
Dataset used: imagenet
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Train: 120G, 1.2W images
- Test: 5G, 50000 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
Environment Requirements
- Hardware GPU
- Prepare hardware environment with GPU processor.
- Framework
- For more information, please check the resources below:
Script description
Script and sample code
.
└─efficientnet
├─README.md
├─scripts
├─run_standalone_train_for_gpu.sh # launch standalone training with gpu platform(1p)
├─run_distribute_train_for_gpu.sh # launch distributed training with gpu platform(8p)
└─run_eval_for_gpu.sh # launch evaluating with gpu platform
├─src
├─config.py # parameter configuration
├─dataset.py # data preprocessing
├─efficientnet.py # network definition
├─loss.py # Customized loss function
├─transform_utils.py # random augment utils
├─transform.py # random augment class
├─eval.py # eval net
└─train.py # train net
Script Parameters
Parameters for both training and evaluating can be set in config.py.
'random_seed': 1, # fix random seed
'model': 'efficientnet_b0', # model name
'drop': 0.2, # dropout rate
'drop_connect': 0.2, # drop connect rate
'opt_eps': 0.001, # optimizer epsilon
'lr': 0.064, # learning rate LR
'batch_size': 128, # batch size
'decay_epochs': 2.4, # epoch interval to decay LR
'warmup_epochs': 5, # epochs to warmup LR
'decay_rate': 0.97, # LR decay rate
'weight_decay': 1e-5, # weight decay
'epochs': 600, # number of epochs to train
'workers': 8, # number of data processing processes
'amp_level': 'O0', # amp level
'opt': 'rmsprop', # optimizer
'num_classes': 1000, # number of classes
'gp': 'avg', # type of global pool, "avg", "max", "avgmax", "avgmaxc"
'momentum': 0.9, # optimizer momentum
'warmup_lr_init': 0.0001, # init warmup LR
'smoothing': 0.1, # label smoothing factor
'bn_tf': False, # use Tensorflow BatchNorm defaults
'keep_checkpoint_max': 10, # max number ckpts to keep
'loss_scale': 1024, # loss scale
'resume_start_epoch': 0, # resume start epoch
Training Process
Usage
GPU:
# distribute training example(8p)
sh run_distribute_train_for_gpu.sh
# standalone training
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_DIR
Launch
# distributed training example(8p) for GPU
cd scripts
sh run_distribute_train_for_gpu.sh 8 0,1,2,3,4,5,6,7 /dataset/train
# standalone training example for GPU
cd scripts
sh run_standalone_train_for_gpu.sh 0 /dataset/train
You can find checkpoint file together with result in log.
Evaluation Process
Usage
# Evaluation
sh run_eval_for_gpu.sh DATA_DIR DEVICE_ID PATH_CHECKPOINT
Launch
# Evaluation with checkpoint
cd scripts
sh run_eval_for_gpu.sh /dataset/eval ./checkpoint/efficientnet_b0-600_1251.ckpt
Result
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
acc=76.96%(TOP1)
Model description
Performance
Training Performance
Parameters | efficientnet_b0 |
---|---|
Resource | NV SMX2 V100-32G |
uploaded Date | 10/26/2020 |
MindSpore Version | 1.0.0 |
Dataset | ImageNet |
Training Parameters | src/config.py |
Optimizer | rmsprop |
Loss Function | LabelSmoothingCrossEntropy |
Loss | 1.8886 |
Accuracy | 76.96%(TOP1) |
Total time | 132 h 8ps |
Checkpoint for Fine tuning | 64 M(.ckpt file) |
Inference Performance
Parameters | |
---|---|
Resource | NV SMX2 V100-32G |
uploaded Date | 10/26/2020 |
MindSpore Version | 1.0.0 |
Dataset | ImageNet, 1.2W |
batch_size | 128 |
outputs | probability |
Accuracy | acc=76.96%(TOP1) |
ModelZoo Homepage
Please check the official homepage.