forked from mindspore-Ecosystem/mindspore
185 lines
5.7 KiB
Python
185 lines
5.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.nn.wrap.cell_wrapper import WithLossCell
|
|
from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops._grad.grad_base import bprop_getters
|
|
from mindspore.ops._grad.grad_math_ops import binop_grad_common
|
|
from mindspore.ops._utils import get_broadcast_shape
|
|
from mindspore.ops.primitive import PrimitiveWithInfer, prim_attr_register
|
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class MockNeg(PrimitiveWithInfer):
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
"""init MockNeg"""
|
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
|
|
def infer_shape(self, input_x):
|
|
return input_x
|
|
|
|
def infer_dtype(self, input_x):
|
|
raise TypeError("InferError")
|
|
# return input_x
|
|
|
|
|
|
class MockSub(PrimitiveWithInfer):
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
"""init MockSub"""
|
|
self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
|
|
|
|
def infer_shape(self, x_shape, y_shape):
|
|
return get_broadcast_shape(x_shape, y_shape)
|
|
|
|
def infer_dtype(self, x_dtype, y_dtype):
|
|
return x_dtype
|
|
|
|
|
|
@bprop_getters.register(MockSub)
|
|
def get_bprop_mock_sub(self):
|
|
"""Grad definition for `MockSub` operation."""
|
|
neg_func = MockNeg()
|
|
|
|
def bprop(x, y, out, dout):
|
|
return binop_grad_common(x, y, dout, neg_func(dout))
|
|
|
|
return bprop
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, in_features, out_features):
|
|
super(Net, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.add = P.TensorAdd()
|
|
|
|
def construct(self, input_):
|
|
output = self.add(self.matmul(input_, self.weight), self.bias)
|
|
return output
|
|
|
|
|
|
class NetFP16(nn.Cell):
|
|
def __init__(self, in_features, out_features):
|
|
super(NetFP16, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.add = P.TensorAdd()
|
|
self.cast = P.Cast()
|
|
|
|
def construct(self, input_):
|
|
output = self.cast(
|
|
self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
|
|
self.cast(self.bias, mstype.float16)), mstype.float32)
|
|
return output
|
|
|
|
|
|
def get_axis(x):
|
|
shape = F.shape(x)
|
|
length = F.tuple_len(shape)
|
|
perm = F.make_range(0, length)
|
|
return perm
|
|
|
|
|
|
class MSELoss(nn.Cell):
|
|
def __init__(self):
|
|
super(MSELoss, self).__init__()
|
|
self.reduce_sum = P.ReduceSum()
|
|
self.square = P.Square()
|
|
self.reduce_mean = P.ReduceMean()
|
|
self.sub = MockSub()
|
|
|
|
def construct(self, data, label):
|
|
diff = self.sub(data, label)
|
|
return self.reduce_mean(self.square(diff), get_axis(diff))
|
|
|
|
|
|
class NegCell(nn.Cell):
|
|
def __init__(self):
|
|
super(NegCell, self).__init__()
|
|
self.neg = MockNeg()
|
|
|
|
def construct(self, x):
|
|
return self.neg(x)
|
|
|
|
|
|
class Net3(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.tuple = (NegCell(), nn.ReLU())
|
|
|
|
def construct(self, x):
|
|
for op in self.tuple:
|
|
x = op(x)
|
|
return x
|
|
|
|
|
|
def test_op_forward_infererror():
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
net = Net3()
|
|
with pytest.raises(TypeError):
|
|
net(input_me)
|
|
|
|
|
|
class SequenceNet(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.seq = nn.SequentialCell([nn.AvgPool2d(3, 1), nn.ReLU(), nn.Flatten()])
|
|
|
|
def construct(self, x):
|
|
x = self.seq(x) + bbb
|
|
return x
|
|
|
|
|
|
def test_sequential_resolve_error():
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
net = SequenceNet()
|
|
with pytest.raises(TypeError):
|
|
net(input_me)
|
|
|
|
|
|
def test_compile_grad_error():
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
|
lr = Tensor(np.ones([1], np.float32) * 0.1)
|
|
net = NetFP16(16, 16)
|
|
loss = MSELoss()
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
scale_manager = DynamicLossScaleManager()
|
|
update_cell = scale_manager.get_update_cell()
|
|
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=update_cell)
|
|
train_network.set_train()
|
|
with pytest.raises(TypeError) as e:
|
|
train_network(inputs, label)
|
|
print(e)
|