mindspore/tests/ut/python/nn/test_lstm.py

104 lines
4.4 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test lstm """
import pytest
import mindspore.context as context
from mindspore import nn
from ..ut_filter import run_on_gpu
from ....ops_common import convert
class LstmTestNet(nn.Cell):
""" LstmTestNet definition """
def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional):
super(LstmTestNet, self).__init__()
self.lstm = nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
has_bias=has_bias,
batch_first=batch_first,
bidirectional=bidirectional,
dropout=0.0)
def construct(self, inp, h0, c0):
return self.lstm(inp, (h0, c0))
test_case_cell_ops = [
('lstm1_with_bias', {
'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=False, bidirectional=False),
'input_shape': [[5, 3, 10], [2, 3, 12], [2, 3, 12]],
'output_shape': [[5, 3, 12], [2, 3, 12], [2, 3, 12]]}),
('lstm2_without_bias', {
'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=False, bidirectional=False),
'input_shape': [[5, 3, 10], [2, 3, 12], [2, 3, 12]],
'output_shape': [[5, 3, 12], [2, 3, 12], [2, 3, 12]]}),
('lstm3_with_bias_bidirectional', {
'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=False, bidirectional=True),
'input_shape': [[5, 3, 10], [4, 3, 12], [4, 3, 12]],
'output_shape': [[5, 3, 24], [4, 3, 12], [4, 3, 12]]}),
('lstm4_without_bias_bidirectional', {
'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=False, bidirectional=True),
'input_shape': [[5, 3, 10], [4, 3, 12], [4, 3, 12]],
'output_shape': [[5, 3, 24], [4, 3, 12], [4, 3, 12]]}),
('lstm5_with_bias_batch_first', {
'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False),
'input_shape': [[3, 5, 10], [2, 3, 12], [2, 3, 12]],
'output_shape': [[3, 5, 12], [2, 3, 12], [2, 3, 12]]}),
('lstm6_without_bias_batch_first', {
'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=True, bidirectional=False),
'input_shape': [[3, 5, 10], [2, 3, 12], [2, 3, 12]],
'output_shape': [[3, 5, 12], [2, 3, 12], [2, 3, 12]]}),
('lstm7_with_bias_bidirectional_batch_first', {
'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=True),
'input_shape': [[3, 5, 10], [4, 3, 12], [4, 3, 12]],
'output_shape': [[3, 5, 24], [4, 3, 12], [4, 3, 12]]}),
('lstm8_without_bias_bidirectional_batch_first', {
'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=True, bidirectional=True),
'input_shape': [[3, 5, 10], [4, 3, 12], [4, 3, 12]],
'output_shape': [[3, 5, 24], [4, 3, 12], [4, 3, 12]]}),
]
# use -k to select certain testcast
# pytest tests/python/ops/test_lstm.py::test_compile -k lstm_with_bias
@pytest.mark.parametrize('args', test_case_cell_ops, ids=lambda x: x[0])
def test_compile(args):
config = args[1]
shapes = config['input_shape']
net = config['cell']
net.set_train()
inputs = [convert(shp) for shp in shapes]
out = net(*inputs)
print(f"out: {out}")
@run_on_gpu
@pytest.mark.parametrize('args', test_case_cell_ops, ids=lambda x: x[0])
def test_execute(args):
""" test_execute """
config = args[1]
shapes = config['input_shape']
net = config['cell']
net.set_train()
inputs = [convert(shp) for shp in shapes]
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
# pylint: disable=unused-variable
ret, (hn, cn) = net(*inputs)
print(f'result: {shapes[0]} --> {ret.asnumpy().shape}, expected: {config["output_shape"][0]}')