forked from mindspore-Ecosystem/mindspore
101 lines
3.5 KiB
Python
Executable File
101 lines
3.5 KiB
Python
Executable File
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell, ParameterUpdate
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
def construct(self, x):
|
|
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
|
|
return x
|
|
|
|
|
|
def test_parameter_update_int32_and_tensor():
|
|
""" test_parameter_update """
|
|
net = Net()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
|
|
# compile train graph
|
|
train_network.set_train()
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
# test tensor
|
|
param_lr = train_network.parameters_dict()['learning_rate']
|
|
update_network = ParameterUpdate(param_lr)
|
|
update_network.phase = 'update_param'
|
|
|
|
input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32)
|
|
_executor.compile(update_network, input_lr)
|
|
|
|
# test int32
|
|
param_step = train_network.parameters_dict()['global_step']
|
|
update_global_step = ParameterUpdate(param_step)
|
|
|
|
input_step = Tensor(np.array([1000]), mstype.int32)
|
|
_executor.compile(update_global_step, input_step)
|
|
|
|
|
|
def test_parameter_update_float32():
|
|
""" test_parameter_update """
|
|
net = Net()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Momentum(net.get_parameters(), 0.01, 0.001)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
|
|
# compile train graph
|
|
train_network.set_train()
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
# construct and compile update graph
|
|
param_lr = train_network.parameters_dict()['learning_rate']
|
|
update_network = ParameterUpdate(param_lr)
|
|
update_network.phase = 'update_param'
|
|
|
|
input_lr = Tensor(0.0001, mstype.float32)
|
|
_executor.compile(update_network, input_lr)
|
|
|
|
|
|
def test_parameter_update_error():
|
|
""" test_parameter_update """
|
|
input_np = np.array([1])
|
|
|
|
with pytest.raises(TypeError):
|
|
ParameterUpdate(input_np)
|