mindspore/tests/ut/python/nn/test_cell_wrapper.py

101 lines
3.5 KiB
Python
Executable File

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.common import dtype as mstype
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell, ParameterUpdate
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
self.matmul = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
def test_parameter_update_int32_and_tensor():
""" test_parameter_update """
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
# compile train graph
train_network.set_train()
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
_executor.compile(train_network, inputs, label)
# test tensor
param_lr = train_network.parameters_dict()['learning_rate']
update_network = ParameterUpdate(param_lr)
update_network.phase = 'update_param'
input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32)
_executor.compile(update_network, input_lr)
# test int32
param_step = train_network.parameters_dict()['global_step']
update_global_step = ParameterUpdate(param_step)
input_step = Tensor(np.array([1000]), mstype.int32)
_executor.compile(update_global_step, input_step)
def test_parameter_update_float32():
""" test_parameter_update """
net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(net.get_parameters(), 0.01, 0.001)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
# compile train graph
train_network.set_train()
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
_executor.compile(train_network, inputs, label)
# construct and compile update graph
param_lr = train_network.parameters_dict()['learning_rate']
update_network = ParameterUpdate(param_lr)
update_network.phase = 'update_param'
input_lr = Tensor(0.0001, mstype.float32)
_executor.compile(update_network, input_lr)
def test_parameter_update_error():
""" test_parameter_update """
input_np = np.array([1])
with pytest.raises(TypeError):
ParameterUpdate(input_np)