forked from mindspore-Ecosystem/mindspore
128 lines
4.6 KiB
Python
128 lines
4.6 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_tuple_slice """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import Tensor
|
|
from mindspore.nn import Cell
|
|
import mindspore.ops.operations as P
|
|
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
|
from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
|
import pipeline_for_verify_exception_for_case_by_case_config
|
|
|
|
|
|
class NetWork_1(Cell):
|
|
""" NetWork_1 definition """
|
|
def __init__(self):
|
|
super(NetWork_1, self).__init__()
|
|
self.addN = P.AddN()
|
|
|
|
def construct(self, tensor_tuple):
|
|
tensor_tuple_slice0 = tensor_tuple[:]
|
|
tensor_tuple_slice1 = tensor_tuple[:3]
|
|
tensor_tuple_slice2 = tensor_tuple[1:]
|
|
tensor_tuple_slice3 = tensor_tuple[2:5:1]
|
|
sum0 = self.addN(tensor_tuple_slice0)
|
|
sum1 = self.addN(tensor_tuple_slice1)
|
|
sum2 = self.addN(tensor_tuple_slice2)
|
|
sum3 = self.addN(tensor_tuple_slice3)
|
|
ret = sum0 + sum1 + sum2 + sum3
|
|
return ret
|
|
|
|
|
|
class NetWork_2(Cell):
|
|
""" NetWork_2 definition """
|
|
def __init__(self):
|
|
super(NetWork_2, self).__init__()
|
|
self.addN = P.AddN()
|
|
|
|
def construct(self, tensor_tuple):
|
|
tensor_tuple_slice0 = tensor_tuple[::-1]
|
|
tensor_tuple_slice1 = tensor_tuple[-1::-1]
|
|
tensor_tuple_slice2 = tensor_tuple[:-4:-1]
|
|
tensor_tuple_slice3 = tensor_tuple[-6:3]
|
|
tensor_tuple_slice4 = tensor_tuple[-1:-6:-2]
|
|
sum0 = self.addN(tensor_tuple_slice0)
|
|
sum1 = self.addN(tensor_tuple_slice1)
|
|
sum2 = self.addN(tensor_tuple_slice2)
|
|
sum3 = self.addN(tensor_tuple_slice3)
|
|
sum4 = self.addN(tensor_tuple_slice4)
|
|
ret = sum0 + sum1 + sum2 + sum3 + sum4
|
|
return ret
|
|
|
|
|
|
class NetWork_3(Cell):
|
|
""" NetWork_3 definition """
|
|
def __init__(self):
|
|
super(NetWork_3, self).__init__()
|
|
self.addN = P.AddN()
|
|
|
|
def construct(self, tensor_tuple, start, stop, step=1):
|
|
tensor_tuple_slice0 = tensor_tuple[start:stop:step]
|
|
res = self.addN(tensor_tuple_slice0)
|
|
return res
|
|
|
|
|
|
test_cases = [
|
|
('SlicePositive', {
|
|
'block': NetWork_1(),
|
|
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.zeros([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.zeros([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)))],
|
|
}),
|
|
('SliceNegative', {
|
|
'block': NetWork_2(),
|
|
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.zeros([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.zeros([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)))],
|
|
}),
|
|
]
|
|
|
|
|
|
test_cases_for_verify_exception = [
|
|
('SliceStartCross', {
|
|
'block': (NetWork_3(), {'exception': RuntimeError}),
|
|
'desc_inputs': [*(Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.zeros([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)))],
|
|
}),
|
|
('SliceStepZero', {
|
|
'block': (NetWork_3(), {'exception': RuntimeError}),
|
|
'desc_inputs': [*(Tensor(np.ones([2, 3, 4], np.int32)),
|
|
Tensor(np.zeros([2, 3, 4], np.int32)),
|
|
Tensor(np.ones([2, 3, 4], np.int32)))],
|
|
}),
|
|
]
|
|
|
|
|
|
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
|
def test_compile():
|
|
return test_cases
|
|
|
|
|
|
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
|
|
def test_check_exception():
|
|
return test_cases_for_verify_exception
|