mindspore/tests/ut/python/ops/test_tuple_slice.py

128 lines
4.6 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tuple_slice """
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn import Cell
import mindspore.ops.operations as P
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
from ....mindspore_test_framework.pipeline.forward.verify_exception \
import pipeline_for_verify_exception_for_case_by_case_config
class NetWork_1(Cell):
""" NetWork_1 definition """
def __init__(self):
super(NetWork_1, self).__init__()
self.addN = P.AddN()
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[:]
tensor_tuple_slice1 = tensor_tuple[:3]
tensor_tuple_slice2 = tensor_tuple[1:]
tensor_tuple_slice3 = tensor_tuple[2:5:1]
sum0 = self.addN(tensor_tuple_slice0)
sum1 = self.addN(tensor_tuple_slice1)
sum2 = self.addN(tensor_tuple_slice2)
sum3 = self.addN(tensor_tuple_slice3)
ret = sum0 + sum1 + sum2 + sum3
return ret
class NetWork_2(Cell):
""" NetWork_2 definition """
def __init__(self):
super(NetWork_2, self).__init__()
self.addN = P.AddN()
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[::-1]
tensor_tuple_slice1 = tensor_tuple[-1::-1]
tensor_tuple_slice2 = tensor_tuple[:-4:-1]
tensor_tuple_slice3 = tensor_tuple[-6:3]
tensor_tuple_slice4 = tensor_tuple[-1:-6:-2]
sum0 = self.addN(tensor_tuple_slice0)
sum1 = self.addN(tensor_tuple_slice1)
sum2 = self.addN(tensor_tuple_slice2)
sum3 = self.addN(tensor_tuple_slice3)
sum4 = self.addN(tensor_tuple_slice4)
ret = sum0 + sum1 + sum2 + sum3 + sum4
return ret
class NetWork_3(Cell):
""" NetWork_3 definition """
def __init__(self):
super(NetWork_3, self).__init__()
self.addN = P.AddN()
def construct(self, tensor_tuple, start, stop, step=1):
tensor_tuple_slice0 = tensor_tuple[start:stop:step]
res = self.addN(tensor_tuple_slice0)
return res
test_cases = [
('SlicePositive', {
'block': NetWork_1(),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
('SliceNegative', {
'block': NetWork_2(),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
]
test_cases_for_verify_exception = [
('SliceStartCross', {
'block': (NetWork_3(), {'exception': RuntimeError}),
'desc_inputs': [*(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
('SliceStepZero', {
'block': (NetWork_3(), {'exception': RuntimeError}),
'desc_inputs': [*(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
return test_cases
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
def test_check_exception():
return test_cases_for_verify_exception