mindspore/tests/ut/python/ops/test_array_ops_check.py

160 lines
6.2 KiB
Python
Executable File

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ops """
import functools
import numpy as np
from mindspore import ops
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
import mindspore.ops.composite as C
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.common.parameter import Parameter
from ..ut_filter import non_graph_engine
from mindspore.common.api import _executor
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward\
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
class ExpandDimsNet(nn.Cell):
def __init__(self, axis):
super(ExpandDimsNet, self).__init__()
self.axis = axis
self.op = P.ExpandDims()
def construct(self, x):
return self.op(x, self.axis)
class IsInstanceNet(nn.Cell):
def __init__(self, inst):
super(IsInstanceNet, self).__init__()
self.inst = inst
self.op = P.IsInstance()
def construct(self, t):
return self.op(self.inst, t)
class ReshapeNet(nn.Cell):
def __init__(self, shape):
super(ReshapeNet, self).__init__()
self.shape = shape
self.op = P.Reshape()
def construct(self, x):
return self.op(x, self.shape)
raise_set = [
# input is scala, not Tensor
('ExpandDims0', {
'block': (P.ExpandDims(), {'exception': TypeError, 'error_keywords': ['ExpandDims']}),
'desc_inputs': [5.0, 1],
'skip': ['backward']}),
# axis is as a parameter
('ExpandDims1', {
'block': (P.ExpandDims(), {'exception': TypeError, 'error_keywords': ['ExpandDims']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), 1],
'skip': ['backward']}),
# axis as an attribute, but less then lower limit
('ExpandDims2', {
'block': (ExpandDimsNet(-4), {'exception': ValueError, 'error_keywords': ['ExpandDims']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# axis as an attribute, but greater then upper limit
('ExpandDims3', {
'block': (ExpandDimsNet(3), {'exception': ValueError, 'error_keywords': ['ExpandDims']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input is scala, not Tensor
('DType0', {
'block': (P.DType(), {'exception': TypeError, 'error_keywords': ['DType']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input x scala, not Tensor
('SameTypeShape0', {
'block': (P.SameTypeShape(), {'exception': TypeError, 'error_keywords': ['SameTypeShape']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input y scala, not Tensor
('SameTypeShape1', {
'block': (P.SameTypeShape(), {'exception': TypeError, 'error_keywords': ['SameTypeShape']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), 5.0],
'skip': ['backward']}),
# type of x and y not match
('SameTypeShape2', {
'block': (P.SameTypeShape(), {'exception': TypeError, 'error_keywords': ['SameTypeShape']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.int32))],
'skip': ['backward']}),
# shape of x and y not match
('SameTypeShape3', {
'block': (P.SameTypeShape(), {'exception': ValueError, 'error_keywords': ['SameTypeShape']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 3]).astype(np.float32))],
'skip': ['backward']}),
# sub_type is None
('IsSubClass0', {
'block': (P.IsSubClass(), {'exception': TypeError, 'error_keywords': ['IsSubClass']}),
'desc_inputs': [None, mstype.number],
'skip': ['backward']}),
# type_ is None
('IsSubClass1', {
'block': (P.IsSubClass(), {'exception': TypeError, 'error_keywords': ['IsSubClass']}),
'desc_inputs': [mstype.number, None],
'skip': ['backward']}),
# inst is var
('IsInstance0', {
'block': (P.IsInstance(), {'exception': ValueError, 'error_keywords': ['IsInstance']}),
'desc_inputs': [5.0, mstype.number],
'skip': ['backward']}),
# t is not mstype.Type
('IsInstance1', {
'block': (IsInstanceNet(5.0), {'exception': TypeError, 'error_keywords': ['IsInstance']}),
'desc_inputs': [None],
'skip': ['backward']}),
# input x is scalar, not Tensor
('Reshape0', {
'block': (P.Reshape(), {'exception': TypeError, 'error_keywords': ['Reshape']}),
'desc_inputs': [5.0, (1, 2)],
'skip': ['backward']}),
# input shape is var
('Reshape1', {
'block': (P.Reshape(), {'exception': TypeError, 'error_keywords': ['Reshape']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), (2, 3, 2)],
'skip': ['backward']}),
# element of shape is not int
('Reshape3', {
'block': (ReshapeNet((2, 3.0, 2)), {'exception': TypeError, 'error_keywords': ['Reshape']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception():
return raise_set