forked from mindspore-Ecosystem/mindspore
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""
|
|
Bert evaluation script.
|
|
"""
|
|
|
|
import os
|
|
from src import BertModel, GetMaskedLMOutput
|
|
from src.evaluation_config import cfg, bert_net_cfg
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore import context
|
|
from mindspore.common.tensor import Tensor
|
|
import mindspore.dataset as de
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
import mindspore.nn as nn
|
|
from mindspore.nn.metrics import Metric
|
|
from mindspore.ops import operations as P
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
class myMetric(Metric):
|
|
'''
|
|
Self-defined Metric as a callback.
|
|
'''
|
|
def __init__(self):
|
|
super(myMetric, self).__init__()
|
|
self.clear()
|
|
|
|
def clear(self):
|
|
self.total_num = 0
|
|
self.acc_num = 0
|
|
|
|
def update(self, *inputs):
|
|
total_num = self._convert_data(inputs[0])
|
|
acc_num = self._convert_data(inputs[1])
|
|
self.total_num = total_num
|
|
self.acc_num = acc_num
|
|
|
|
def eval(self):
|
|
return self.acc_num/self.total_num
|
|
|
|
|
|
class GetLogProbs(nn.Cell):
|
|
'''
|
|
Get MaskedLM prediction scores
|
|
'''
|
|
def __init__(self, config):
|
|
super(GetLogProbs, self).__init__()
|
|
self.bert = BertModel(config, False)
|
|
self.cls1 = GetMaskedLMOutput(config)
|
|
|
|
def construct(self, input_ids, input_mask, token_type_id, masked_pos):
|
|
sequence_output, _, embedding_table = self.bert(input_ids, token_type_id, input_mask)
|
|
prediction_scores = self.cls1(sequence_output, embedding_table, masked_pos)
|
|
return prediction_scores
|
|
|
|
|
|
class BertPretrainEva(nn.Cell):
|
|
'''
|
|
Evaluate MaskedLM prediction scores
|
|
'''
|
|
def __init__(self, config):
|
|
super(BertPretrainEva, self).__init__()
|
|
self.bert = GetLogProbs(config)
|
|
self.argmax = P.Argmax(axis=-1, output_type=mstype.int32)
|
|
self.equal = P.Equal()
|
|
self.mean = P.ReduceMean()
|
|
self.sum = P.ReduceSum()
|
|
self.total = Parameter(Tensor([0], mstype.float32), name='total')
|
|
self.acc = Parameter(Tensor([0], mstype.float32), name='acc')
|
|
self.reshape = P.Reshape()
|
|
self.shape = P.Shape()
|
|
self.cast = P.Cast()
|
|
|
|
|
|
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
|
|
bs, _ = self.shape(input_ids)
|
|
probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
|
|
index = self.argmax(probs)
|
|
index = self.reshape(index, (bs, -1))
|
|
eval_acc = self.equal(index, masked_ids)
|
|
eval_acc1 = self.cast(eval_acc, mstype.float32)
|
|
real_acc = eval_acc1 * masked_weights
|
|
acc = self.sum(real_acc)
|
|
total = self.sum(masked_weights)
|
|
self.total += total
|
|
self.acc += acc
|
|
return acc, self.total, self.acc
|
|
|
|
|
|
def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|
'''
|
|
Get enwiki seq_length=512 dataset
|
|
'''
|
|
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
|
|
"masked_lm_positions", "masked_lm_ids",
|
|
"masked_lm_weights",
|
|
"next_sentence_labels"])
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
|
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
|
ds = ds.repeat(repeat_count)
|
|
|
|
# apply batch operations
|
|
ds = ds.batch(batch_size, drop_remainder=True)
|
|
return ds
|
|
|
|
|
|
def bert_predict():
|
|
'''
|
|
Predict function
|
|
'''
|
|
devid = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
|
|
dataset = get_enwiki_512_dataset(bert_net_cfg.batch_size, 1)
|
|
net_for_pretraining = BertPretrainEva(bert_net_cfg)
|
|
net_for_pretraining.set_train(False)
|
|
param_dict = load_checkpoint(cfg.finetune_ckpt)
|
|
load_param_into_net(net_for_pretraining, param_dict)
|
|
model = Model(net_for_pretraining)
|
|
return model, dataset, net_for_pretraining
|
|
|
|
|
|
def MLM_eval():
|
|
'''
|
|
Evaluate function
|
|
'''
|
|
_, dataset, net_for_pretraining = bert_predict()
|
|
net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2],
|
|
metrics={'name': myMetric()})
|
|
res = net.eval(dataset, dataset_sink_mode=False)
|
|
print("==============================================================")
|
|
for _, v in res.items():
|
|
print("Accuracy is: ")
|
|
print(v)
|
|
print("==============================================================")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
MLM_eval()
|