forked from mindspore-Ecosystem/mindspore
202 lines
8.3 KiB
Python
202 lines
8.3 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Create training instances for Transformer."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import collections
|
|
import logging
|
|
import numpy as np
|
|
import src.tokenization as tokenization
|
|
from mindspore.mindrecord import FileWriter
|
|
|
|
class SampleInstance():
|
|
"""A single sample instance (sentence pair)."""
|
|
|
|
def __init__(self, source_sos_tokens, source_eos_tokens, target_sos_tokens, target_eos_tokens):
|
|
self.source_sos_tokens = source_sos_tokens
|
|
self.source_eos_tokens = source_eos_tokens
|
|
self.target_sos_tokens = target_sos_tokens
|
|
self.target_eos_tokens = target_eos_tokens
|
|
|
|
def __str__(self):
|
|
s = ""
|
|
s += "source sos tokens: %s\n" % (" ".join(
|
|
[tokenization.printable_text(x) for x in self.source_sos_tokens]))
|
|
s += "source eos tokens: %s\n" % (" ".join(
|
|
[tokenization.printable_text(x) for x in self.source_eos_tokens]))
|
|
s += "target sos tokens: %s\n" % (" ".join(
|
|
[tokenization.printable_text(x) for x in self.target_sos_tokens]))
|
|
s += "target eos tokens: %s\n" % (" ".join(
|
|
[tokenization.printable_text(x) for x in self.target_eos_tokens]))
|
|
s += "\n"
|
|
return s
|
|
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
|
|
def write_instance_to_file(writer, instance, tokenizer, max_seq_length):
|
|
"""Create files from `SampleInstance`s."""
|
|
|
|
def _convert_ids_and_mask(input_tokens):
|
|
input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
|
|
input_mask = [1] * len(input_ids)
|
|
assert len(input_ids) <= max_seq_length
|
|
|
|
while len(input_ids) < max_seq_length:
|
|
input_ids.append(0)
|
|
input_mask.append(0)
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
assert len(input_mask) == max_seq_length
|
|
|
|
return input_ids, input_mask
|
|
|
|
source_sos_ids, source_sos_mask = _convert_ids_and_mask(instance.source_sos_tokens)
|
|
source_eos_ids, source_eos_mask = _convert_ids_and_mask(instance.source_eos_tokens)
|
|
target_sos_ids, target_sos_mask = _convert_ids_and_mask(instance.target_sos_tokens)
|
|
target_eos_ids, target_eos_mask = _convert_ids_and_mask(instance.target_eos_tokens)
|
|
|
|
features = collections.OrderedDict()
|
|
features["source_sos_ids"] = np.asarray(source_sos_ids)
|
|
features["source_sos_mask"] = np.asarray(source_sos_mask)
|
|
features["source_eos_ids"] = np.asarray(source_eos_ids)
|
|
features["source_eos_mask"] = np.asarray(source_eos_mask)
|
|
features["target_sos_ids"] = np.asarray(target_sos_ids)
|
|
features["target_sos_mask"] = np.asarray(target_sos_mask)
|
|
features["target_eos_ids"] = np.asarray(target_eos_ids)
|
|
features["target_eos_mask"] = np.asarray(target_eos_mask)
|
|
|
|
writer.write_raw_data([features])
|
|
return features
|
|
|
|
def create_training_instance(source_words, target_words, max_seq_length, clip_to_max_len):
|
|
"""Creates `SampleInstance`s for a single sentence pair."""
|
|
EOS = "</s>"
|
|
SOS = "<s>"
|
|
|
|
if len(source_words) >= max_seq_length or len(target_words) >= max_seq_length:
|
|
if clip_to_max_len:
|
|
print("####lalalal")
|
|
source_words = source_words[:min([len(source_words, max_seq_length-1)])]
|
|
target_words = target_words[:min([len(target_words, max_seq_length-1)])]
|
|
else:
|
|
return None
|
|
|
|
source_sos_tokens = [SOS] + source_words
|
|
source_eos_tokens = source_words + [EOS]
|
|
target_sos_tokens = [SOS] + target_words
|
|
target_eos_tokens = target_words + [EOS]
|
|
|
|
instance = SampleInstance(
|
|
source_sos_tokens=source_sos_tokens,
|
|
source_eos_tokens=source_eos_tokens,
|
|
target_sos_tokens=target_sos_tokens,
|
|
target_eos_tokens=target_eos_tokens)
|
|
return instance
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--input_file", type=str, required=True,
|
|
help='Input raw text file (or comma-separated list of files).')
|
|
parser.add_argument("--output_file", type=str, required=True, help='Output MindRecord file.')
|
|
parser.add_argument("--num_splits", type=int, default=16,
|
|
help='The MindRecord file will be split into the number of partition.')
|
|
parser.add_argument("--vocab_file", type=str, required=True,
|
|
help='The vocabulary file that the Transformer model was trained on.')
|
|
parser.add_argument("--clip_to_max_len", type=bool, default=False,
|
|
help='clip sequences to maximum sequence length.')
|
|
parser.add_argument("--max_seq_length", type=int, default=128, help='Maximum sequence length.')
|
|
args = parser.parse_args()
|
|
|
|
tokenizer = tokenization.WhiteSpaceTokenizer(vocab_file=args.vocab_file)
|
|
|
|
input_files = []
|
|
for input_pattern in args.input_file.split(","):
|
|
input_files.append(input_pattern)
|
|
|
|
logging.info("*** Reading from input files ***")
|
|
for input_file in input_files:
|
|
logging.info(" %s", input_file)
|
|
|
|
output_file = args.output_file
|
|
logging.info("*** Writing to output files ***")
|
|
logging.info(" %s", output_file)
|
|
|
|
writer = FileWriter(output_file, args.num_splits)
|
|
data_schema = {"source_sos_ids": {"type": "int64", "shape": [-1]},
|
|
"source_sos_mask": {"type": "int64", "shape": [-1]},
|
|
"source_eos_ids": {"type": "int64", "shape": [-1]},
|
|
"source_eos_mask": {"type": "int64", "shape": [-1]},
|
|
"target_sos_ids": {"type": "int64", "shape": [-1]},
|
|
"target_sos_mask": {"type": "int64", "shape": [-1]},
|
|
"target_eos_ids": {"type": "int64", "shape": [-1]},
|
|
"target_eos_mask": {"type": "int64", "shape": [-1]}
|
|
}
|
|
writer.add_schema(data_schema, "tranformer hisi")
|
|
|
|
total_written = 0
|
|
total_read = 0
|
|
|
|
for input_file in input_files:
|
|
logging.info("*** Reading from %s ***", input_file)
|
|
with open(input_file, "r") as reader:
|
|
while True:
|
|
line = tokenization.convert_to_unicode(reader.readline())
|
|
if not line:
|
|
break
|
|
|
|
total_read += 1
|
|
if total_read % 100000 == 0:
|
|
logging.info("%d ...", total_read)
|
|
|
|
source_line, target_line = line.strip().split("\t")
|
|
source_tokens = tokenizer.tokenize(source_line)
|
|
target_tokens = tokenizer.tokenize(target_line)
|
|
|
|
if len(source_tokens) >= args.max_seq_length or len(target_tokens) >= args.max_seq_length:
|
|
logging.info("ignore long sentence!")
|
|
continue
|
|
|
|
instance = create_training_instance(source_tokens, target_tokens, args.max_seq_length,
|
|
clip_to_max_len=args.clip_to_max_len)
|
|
if instance is None:
|
|
continue
|
|
|
|
features = write_instance_to_file(writer, instance, tokenizer, args.max_seq_length)
|
|
total_written += 1
|
|
|
|
if total_written <= 20:
|
|
logging.info("*** Example ***")
|
|
logging.info("source tokens: %s", " ".join(
|
|
[tokenization.printable_text(x) for x in instance.source_eos_tokens]))
|
|
logging.info("target tokens: %s", " ".join(
|
|
[tokenization.printable_text(x) for x in instance.target_sos_tokens]))
|
|
|
|
for feature_name in features.keys():
|
|
feature = features[feature_name]
|
|
logging.info("%s: %s", feature_name, feature)
|
|
|
|
writer.commit()
|
|
logging.info("Wrote %d total instances", total_written)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|