mindspore-ci-bot
854290c098
Merge pull request !2984 from chenzhongming/master |
||
---|---|---|
.. | ||
scripts | ||
src | ||
Readme.md | ||
eval.py | ||
train.py |
Readme.md
MobileNetV2 Description
MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019.
Paper Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019.
Model architecture
The overall network architecture of MobileNetV2 is show below:
Dataset
Dataset used: imagenet
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Train: 120G, 1.2W images
- Test: 5G, 50000 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
Features
Environment Requirements
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the application form to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- For more information, please check the resources below:
Script description
Script and sample code
├── MobileNetV2
├── Readme.md
├── scripts
│ ├──run_train.sh
│ ├──run_eval.sh
├── src
│ ├──config.py
│ ├──dataset.py
│ ├──luanch.py
│ ├──lr_generator.py
│ ├──mobilenetV2.py
├── train.py
├── eval.py
Training process
Usage
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [CKPT_PATH]
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
Launch
# training example
Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ mobilenet_199.ckpt
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
Result
Training result will be stored in the example path. Checkpoints will be stored at . /checkpoint
by default, and training log will be redirected to ./train/train.log
like followings.
epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
epoch time: 138331.250, per step time: 221.330, avg loss: 3.917
Eval process
Usage
- Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
- GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH]
Launch
# infer example
Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
checkpoint can be produced in training process.
Result
Inference result will be stored in the example path, you can find result like the followings in val.log
.
result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt
Model description
Performance
Training Performance
Parameters | MobilenetV2 | |
---|---|---|
Model Version | large | |
Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
uploaded Date | 05/06/2020 | 05/06/2020 |
MindSpore Version | 0.3.0 | 0.3.0 |
Dataset | ImageNet | ImageNet |
Training Parameters | src/config.py | src/config.py |
Optimizer | Momentum | Momentum |
Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
outputs | ||
Loss | 1.913 | |
Accuracy | ACC1[77.09%] ACC5[92.57%] | |
Total time | ||
Params (M) | ||
Checkpoint for Fine tuning | ||
Model for inference |
Inference Performance
Parameters | |||
---|---|---|---|
Model Version | V1 | ||
Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
uploaded Date | 05/06/2020 | 05/22/2020 | |
MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
batch_size | 130(8P) | ||
outputs | |||
Accuracy | ACC1[72.07%] ACC5[90.90%] | ||
Speed | |||
Total time | |||
Model for inference |