forked from mindspore-Ecosystem/mindspore
5276551953 | ||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
__init__.py | ||
eval.py | ||
train.py |
README.md
DeepFM Description
This is an example of training DeepFM with Criteo dataset in MindSpore.
Paper Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He
Model architecture
The overall network architecture of DeepFM is show below:
Requirements
- Install MindSpore.
- Download the criteo dataset for pre-training. Extract and clean text in the dataset with WikiExtractor. Convert the dataset to TFRecord format and move the files to a specified path.
- For more information, please check the resources below:
Script description
Script and sample code
├── deepfm
├── README.md
├── scripts
│ ├──run_train.sh
│ ├──run_eval.sh
├── src
│ ├──config.py
│ ├──dataset.py
│ ├──callback.py
│ ├──deepfm.py
├── train.py
├── eval.py
Training process
Usage
- sh run_train.sh [DEVICE_NUM] [DATASET_PATH] [MINDSPORE_HCCL_CONFIG_PAHT]
- python train.py --dataset_path [DATASET_PATH]
Launch
# distribute training example
sh scripts/run_distribute_train.sh 8 /opt/dataset/criteo /opt/mindspore_hccl_file.json
# standalone training example
sh scripts/run_standalone_train.sh 0 /opt/dataset/criteo
or
python train.py --dataset_path /opt/dataset/criteo > output.log 2>&1 &
Result
Training result will be stored in the example path.
Checkpoints will be stored at ./checkpoint
by default,
and training log will be redirected to ./output.log
by default,
and loss log will be redirected to ./loss.log
by default,
and eval log will be redirected to ./auc.log
by default.
Eval process
Usage
- sh run_eval.sh [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
Launch
# infer example
sh scripts/run_eval.sh 0 ~/criteo/eval/ ~/train/deepfm-15_41257.ckpt
checkpoint can be produced in training process.
Result
Inference result will be stored in the example path, you can find result like the followings in auc.log
.
2020-05-27 20:51:35 AUC: 0.80577889065281, eval time: 35.55999s.
Model description
Performance
Training Performance
Parameters | DeepFM |
---|---|
Model Version | |
Resource | Ascend 910, cpu:2.60GHz 96cores, memory:1.5T |
uploaded Date | 05/27/2020 |
MindSpore Version | 0.2.0 |
Dataset | Criteo |
Training Parameters | src/config.py |
Optimizer | Adam |
Loss Function | SoftmaxCrossEntropyWithLogits |
outputs | |
Loss | 0.4234 |
Accuracy | AUC[0.8055] |
Total time | 91 min |
Params (M) | |
Checkpoint for Fine tuning | |
Model for inference |
Inference Performance
Parameters | ||
---|---|---|
Model Version | ||
Resource | Ascend 910 | Ascend 310 |
uploaded Date | 05/27/2020 | 05/27/2020 |
MindSpore Version | 0.2.0 | 0.2.0 |
Dataset | Criteo | |
batch_size | 1000 | |
outputs | ||
Accuracy | AUC[0.8055] | |
Speed | ||
Total time | 35.559s | |
Model for inference |