mindspore/model_zoo/mass/tokenize_corpus.py

98 lines
3.2 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tokenizer."""
import os
import argparse
from typing import Callable
from multiprocessing import Pool
parser = argparse.ArgumentParser(description='Corpus tokenizer which text file must end with `.txt`.')
parser.add_argument("--corpus_folder", type=str, default="", required=True,
help="Corpus folder path, if multi-folders are provided, use ',' split folders.")
parser.add_argument("--output_folder", type=str, default="", required=True,
help="Output folder path.")
parser.add_argument("--tokenizer", type=str, default="nltk", required=False,
help="Tokenizer to be used, nltk or jieba, if nltk is not installed fully, "
"use jieba instead.")
parser.add_argument("--pool_size", type=int, default=2, required=False,
help="Processes pool size.")
TOKENIZER = Callable
def create_tokenized_sentences(file_path, tokenized_file):
"""
Create tokenized sentences.
Args:
file_path (str): Text file.
tokenized_file (str): Output file.
"""
global TOKENIZER
print(f" | Processing {file_path}.")
tokenized_sen = []
with open(file_path, "r") as file:
for sen in file:
tokens = TOKENIZER(sen)
tokens = [t for t in tokens if t != " "]
if len(tokens) > 175:
continue
tokenized_sen.append(" ".join(tokens) + "\n")
with open(tokenized_file, "w") as file:
file.writelines(tokenized_sen)
print(f" | Wrote to {tokenized_file}.")
def tokenize():
"""Tokenizer."""
global TOKENIZER
args, _ = parser.parse_known_args()
src_folder = args.corpus_folder.split(",")
try:
from nltk.tokenize import word_tokenize
TOKENIZER = word_tokenize
except (ImportError, ModuleNotFoundError, LookupError):
try:
import jieba
except Exception as e:
raise e
print(" | NLTK is not found, use jieba instead.")
TOKENIZER = jieba.cut
if args.tokenizer == "jieba":
import jieba
TOKENIZER = jieba.cut
pool = Pool(args.pool_size)
for folder in src_folder:
for file in os.listdir(folder):
if not file.endswith(".txt"):
continue
file_path = os.path.join(folder, file)
out_path = os.path.join(args.output_folder, file.replace(".txt", "_tokenized.txt"))
pool.apply_async(create_tokenized_sentences, (file_path, out_path,))
pool.close()
pool.join()
if __name__ == '__main__':
tokenize()