mindspore/model_zoo/mobilenetv2/Readme.md

151 lines
7.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# MobileNetV2 Description
MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019.
[Paper](https://arxiv.org/pdf/1905.02244) Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019.
# Model architecture
The overall network architecture of MobileNetV2 is show below:
[Link](https://arxiv.org/pdf/1905.02244)
# Dataset
Dataset used: [imagenet](http://www.image-net.org/)
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Train: 120G, 1.2W images
- Test: 5G, 50000 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
# Features
# Environment Requirements
- HardwareAscend/GPU
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# Script description
## Script and sample code
```python
├── MobileNetV2
├── Readme.md
├── scripts
├──run_train.sh
├──run_eval.sh
├── src
├──config.py
├──dataset.py
├──luanch.py
├──lr_generator.py
├──mobilenetV2.py
├── train.py
├── eval.py
```
## Training process
### Usage
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [CKPT_PATH]
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
### Launch
```
# training example
Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ mobilenet_199.ckpt
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
```
### Result
Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings.
```
epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
epoch time: 138331.250, per step time: 221.330, avg loss: 3.917
```
## Eval process
### Usage
- Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
- GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH]
### Launch
```
# infer example
Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
```
> checkpoint can be produced in training process.
### Result
Inference result will be stored in the example path, you can find result like the followings in `val.log`.
```
result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt
```
# Model description
## Performance
### Training Performance
| Parameters | MobilenetV2 | |
| -------------------------- | ---------------------------------------------------------- | ------------------------- |
| Model Version | | large |
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
| uploaded Date | 05/06/2020 | 05/06/2020 |
| MindSpore Version | 0.3.0 | 0.3.0 |
| Dataset | ImageNet | ImageNet |
| Training Parameters | src/config.py | src/config.py |
| Optimizer | Momentum | Momentum |
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
| outputs | | |
| Loss | | 1.913 |
| Accuracy | | ACC1[77.09%] ACC5[92.57%] |
| Total time | | |
| Params (M) | | |
| Checkpoint for Fine tuning | | |
| Model for inference | | |
#### Inference Performance
| Parameters | | | |
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
| Model Version | V1 | | |
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
| uploaded Date | 05/06/2020 | 05/22/2020 | |
| MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
| batch_size | | 130(8P) | |
| outputs | | | |
| Accuracy | | ACC1[72.07%] ACC5[90.90%] | |
| Speed | | | |
| Total time | | | |
| Model for inference | | | |
# ModelZoo Homepage
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)