forked from mindspore-Ecosystem/mindspore
141 lines
5.6 KiB
Python
141 lines
5.6 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Transformed Distribution"""
|
|
from mindspore._checkparam import Validator as validator
|
|
from mindspore.common import dtype as mstype
|
|
import mindspore.nn as nn
|
|
from .distribution import Distribution
|
|
from ._utils.utils import check_type, raise_not_impl_error
|
|
from ._utils.custom_ops import exp_generic, log_generic
|
|
|
|
class TransformedDistribution(Distribution):
|
|
"""
|
|
Transformed Distribution.
|
|
This class contains a bijector and a distribution and transforms the original distribution
|
|
to a new distribution through the operation defined by the bijector.
|
|
|
|
Args:
|
|
bijector (Bijector): The transformation to perform.
|
|
distribution (Distribution): The original distribution.
|
|
name (str): The name of the transformed distribution. Default: transformed_distribution.
|
|
|
|
Note:
|
|
The arguments used to initialize the original distribution cannot be None.
|
|
For example, mynormal = nn.Normal(dtype=dtyple.float32) cannot be used to initialized a
|
|
TransformedDistribution since `mean` and `sd` are not specified.
|
|
|
|
Examples:
|
|
>>> # To initialize a transformed distribution, e.g. lognormal distribution,
|
|
>>> # using Normal distribution as the base distribution, and Exp bijector as the bijector function.
|
|
>>> import mindspore.nn.probability.distribution as msd
|
|
>>> import mindspore.nn.probability.bijector as msb
|
|
>>> ln = msd.TransformedDistribution(msb.Exp(),
|
|
>>> msd.Normal(0.0, 1.0, dtype=mstype.float32),
|
|
>>> dtype=mstype.float32)
|
|
>>>
|
|
>>> # To use a transformed distribution in a network
|
|
>>> class net(Cell):
|
|
>>> def __init__(self):
|
|
>>> super(net, self).__init__():
|
|
>>> self.ln = msd.TransformedDistribution(msb.Exp(),
|
|
>>> msd.Normal(0.0, 1.0, dtype=mstype.float32),
|
|
>>> dtype=mstype.float32)
|
|
>>>
|
|
>>> def construct(self, value):
|
|
>>> # Similar calls can be made to other probability functions
|
|
>>> # by replacing 'sample' with the name of the function
|
|
>>> ans = self.ln.sample(shape=(2, 3))
|
|
"""
|
|
def __init__(self,
|
|
bijector,
|
|
distribution,
|
|
dtype,
|
|
seed=None,
|
|
name="transformed_distribution"):
|
|
"""
|
|
Constructor of transformed_distribution class.
|
|
"""
|
|
param = dict(locals())
|
|
validator.check_value_type('bijector', bijector, [nn.probability.bijector.Bijector], type(self).__name__)
|
|
validator.check_value_type('distribution', distribution, [Distribution], type(self).__name__)
|
|
valid_dtype = mstype.number_type
|
|
check_type(dtype, valid_dtype, type(self).__name__)
|
|
super(TransformedDistribution, self).__init__(seed, dtype, name, param)
|
|
|
|
self._bijector = bijector
|
|
self._distribution = distribution
|
|
self._is_linear_transformation = bijector.is_constant_jacobian
|
|
self.exp = exp_generic
|
|
self.log = log_generic
|
|
|
|
@property
|
|
def bijector(self):
|
|
return self._bijector
|
|
|
|
@property
|
|
def distribution(self):
|
|
return self._distribution
|
|
|
|
@property
|
|
def is_linear_transformation(self):
|
|
return self._is_linear_transformation
|
|
|
|
def _cdf(self, *args, **kwargs):
|
|
r"""
|
|
.. math::
|
|
Y = g(X)
|
|
P(Y <= a) = P(X <= g^{-1}(a))
|
|
"""
|
|
inverse_value = self.bijector("inverse", *args, **kwargs)
|
|
return self.distribution("cdf", inverse_value)
|
|
|
|
def _log_cdf(self, *args, **kwargs):
|
|
return self.log(self._cdf(*args, **kwargs))
|
|
|
|
def _survival_function(self, *args, **kwargs):
|
|
return 1.0 - self._cdf(*args, **kwargs)
|
|
|
|
def _log_survival(self, *args, **kwargs):
|
|
return self.log(self._survival_function(*args, **kwargs))
|
|
|
|
def _log_prob(self, *args, **kwargs):
|
|
r"""
|
|
.. math::
|
|
Y = g(X)
|
|
Py(a) = Px(g^{-1}(a)) * (g^{-1})'(a)
|
|
\log(Py(a)) = \log(Px(g^{-1}(a))) + \log((g^{-1})'(a))
|
|
"""
|
|
inverse_value = self.bijector("inverse", *args, **kwargs)
|
|
unadjust_prob = self.distribution("log_prob", inverse_value)
|
|
log_jacobian = self.bijector("inverse_log_jacobian", *args, **kwargs)
|
|
return unadjust_prob + log_jacobian
|
|
|
|
def _prob(self, *args, **kwargs):
|
|
return self.exp(self._log_prob(*args, **kwargs))
|
|
|
|
def _sample(self, *args, **kwargs):
|
|
org_sample = self.distribution("sample", *args, **kwargs)
|
|
return self.bijector("forward", org_sample)
|
|
|
|
def _mean(self, *args, **kwargs):
|
|
"""
|
|
Note:
|
|
This function maybe overridden by derived class.
|
|
"""
|
|
if not self.is_linear_transformation:
|
|
raise_not_impl_error("mean")
|
|
|
|
return self.bijector("forward", self.distribution("mean", *args, **kwargs))
|