forked from mindspore-Ecosystem/mindspore
154 lines
7.2 KiB
Python
Executable File
154 lines
7.2 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Train Resnet50 on ImageNet"""
|
|
|
|
import os
|
|
import argparse
|
|
|
|
from mindspore import context
|
|
from mindspore import Tensor
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.train.model import Model, ParallelMode
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
from mindspore.train.serialization import load_checkpoint
|
|
from mindspore.train.quant import quant
|
|
from mindspore.communication.management import init
|
|
import mindspore.nn as nn
|
|
import mindspore.common.initializer as weight_init
|
|
|
|
from models.resnet_quant import resnet50_quant
|
|
from src.dataset import create_dataset
|
|
from src.lr_generator import get_lr
|
|
from src.config import quant_set, config_quant, config_noquant
|
|
from src.crossentropy import CrossEntropy
|
|
from src.utils import _load_param_into_net
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
|
parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
|
|
args_opt = parser.parse_args()
|
|
config = config_quant if quant_set.quantization_aware else config_noquant
|
|
|
|
if args_opt.device_target == "Ascend":
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
rank_id = int(os.getenv('RANK_ID'))
|
|
rank_size = int(os.getenv('RANK_SIZE'))
|
|
run_distribute = rank_size > 1
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="Ascend",
|
|
save_graphs=False,
|
|
device_id=device_id,
|
|
enable_auto_mixed_precision=True)
|
|
else:
|
|
raise ValueError("Unsupported device target.")
|
|
|
|
if __name__ == '__main__':
|
|
# train on ascend
|
|
print("training args: {}".format(args_opt))
|
|
print("training configure: {}".format(config))
|
|
print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
|
|
epoch_size = config.epoch_size
|
|
|
|
# distribute init
|
|
if run_distribute:
|
|
context.set_auto_parallel_context(device_num=rank_size,
|
|
parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
parameter_broadcast=True,
|
|
mirror_mean=True)
|
|
init()
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num,
|
|
parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
mirror_mean=True)
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
|
|
|
|
# define network
|
|
net = resnet50_quant(class_num=config.class_num)
|
|
net.set_train(True)
|
|
|
|
# weight init and load checkpoint file
|
|
if args_opt.pre_trained:
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
_load_param_into_net(net, param_dict)
|
|
epoch_size = config.epoch_size - config.pretrained_epoch_size
|
|
else:
|
|
for _, cell in net.cells_and_names():
|
|
if isinstance(cell, nn.Conv2d):
|
|
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
|
cell.weight.default_input.shape,
|
|
cell.weight.default_input.dtype).to_tensor()
|
|
if isinstance(cell, nn.Dense):
|
|
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
|
cell.weight.default_input.shape,
|
|
cell.weight.default_input.dtype).to_tensor()
|
|
if not config.use_label_smooth:
|
|
config.label_smooth_factor = 0.0
|
|
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
|
|
# define dataset
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
do_train=True,
|
|
repeat_num=1,
|
|
batch_size=config.batch_size,
|
|
target=args_opt.device_target)
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
if quant_set.quantization_aware:
|
|
# convert fusion network to quantization aware network
|
|
net = quant.convert_quant_network(net, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
|
|
|
|
# get learning rate
|
|
lr = get_lr(lr_init=config.lr_init,
|
|
lr_end=0.0,
|
|
lr_max=config.lr_max,
|
|
warmup_epochs=config.warmup_epochs,
|
|
total_epochs=config.epoch_size,
|
|
steps_per_epoch=step_size,
|
|
lr_decay_mode='cosine')
|
|
if args_opt.pre_trained:
|
|
lr = lr[config.pretrained_epoch_size * step_size:]
|
|
lr = Tensor(lr)
|
|
|
|
# define optimization
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
|
config.weight_decay, config.loss_scale)
|
|
|
|
# define model
|
|
if quant_set.quantization_aware:
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
|
|
else:
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
|
amp_level="O2")
|
|
|
|
print("============== Starting Training ==============")
|
|
time_callback = TimeMonitor(data_size=step_size)
|
|
loss_callback = LossMonitor()
|
|
callbacks = [time_callback, loss_callback]
|
|
if rank_id == 0:
|
|
if config.save_checkpoint:
|
|
config_ckpt = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
ckpt_callback = ModelCheckpoint(prefix="ResNet50",
|
|
directory=config.save_checkpoint_path,
|
|
config=config_ckpt)
|
|
callbacks += [ckpt_callback]
|
|
model.train(epoch_size, dataset, callbacks=callbacks)
|
|
print("============== End Training ==============")
|