mindspore/model_zoo/resnet50_quant/eval.py

79 lines
3.2 KiB
Python
Executable File

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluate Resnet50 on ImageNet"""
import os
import argparse
from src.config import quant_set, config_quant, config_noquant
from src.dataset import create_dataset
from src.crossentropy import CrossEntropy
from src.utils import _load_param_into_net
from models.resnet_quant import resnet50_quant
from mindspore import context
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint
from mindspore.train.quant import quant
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
config = config_quant if quant_set.quantization_aware else config_noquant
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id)
if __name__ == '__main__':
# define fusion network
net = resnet50_quant(class_num=config.class_num)
if quant_set.quantization_aware:
# convert fusion network to quantization aware network
net = quant.convert_quant_network(net,
bn_fold=True,
per_channel=[True, False],
symmetric=[True, False])
# define network loss
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropy(smooth_factor=config.label_smooth_factor,
num_classes=config.class_num)
# define dataset
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=False,
batch_size=config.batch_size,
target=args_opt.device_target)
step_size = dataset.get_dataset_size()
# load checkpoint
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
_load_param_into_net(net, param_dict)
net.set_train(False)
# define model
model = Model(net, loss_fn=loss, metrics={'acc'})
print("============== Starting Validation ==============")
res = model.eval(dataset)
print("result:", res, "ckpt=", args_opt.checkpoint_path)
print("============== End Validation ==============")