forked from mindspore-Ecosystem/mindspore
74 lines
2.1 KiB
Python
Executable File
74 lines
2.1 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
# """test_fbeta"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import Tensor
|
|
from mindspore.nn.metrics import get_metric_fn, Fbeta
|
|
|
|
|
|
def test_classification_fbeta():
|
|
"""test_classification_fbeta"""
|
|
x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
|
y = Tensor(np.array([1, 0, 1]))
|
|
y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
|
|
metric = get_metric_fn('F1')
|
|
metric.clear()
|
|
metric.update(x, y)
|
|
fbeta = metric.eval()
|
|
fbeta_mean = metric.eval(True)
|
|
fbeta2 = metric(x, y2)
|
|
|
|
assert np.allclose(fbeta, np.array([2 / 3, 2 / 3]))
|
|
assert np.allclose(fbeta2, np.array([2 / 3, 2 / 3]))
|
|
assert np.allclose(fbeta_mean, 2 / 3)
|
|
|
|
|
|
def test_fbeta_update1():
|
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
|
y = Tensor(np.array([1, 0]))
|
|
metric = Fbeta(2)
|
|
metric.clear()
|
|
|
|
with pytest.raises(ValueError):
|
|
metric.update(x, y)
|
|
|
|
|
|
def test_fbeta_update2():
|
|
x1 = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
|
y1 = Tensor(np.array([1, 0, 2]))
|
|
x2 = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
|
y2 = Tensor(np.array([1, 0, 2]))
|
|
metric = Fbeta(2)
|
|
metric.clear()
|
|
metric.update(x1, y1)
|
|
|
|
with pytest.raises(ValueError):
|
|
metric.update(x2, y2)
|
|
|
|
|
|
def test_fbeta_init():
|
|
with pytest.raises(ValueError):
|
|
Fbeta(0)
|
|
|
|
|
|
def test_fbeta_runtime():
|
|
metric = Fbeta(2)
|
|
metric.clear()
|
|
|
|
with pytest.raises(RuntimeError):
|
|
metric.eval()
|