forked from mindspore-Ecosystem/mindspore
108 lines
3.4 KiB
Python
108 lines
3.4 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test dataset helper."""
|
|
|
|
import pytest
|
|
import numpy as np
|
|
import mindspore.context as context
|
|
from mindspore.communication.management import init
|
|
from mindspore.train.dataset_helper import DatasetHelper
|
|
from ....dataset_mock import MindData
|
|
|
|
|
|
def get_dataset(batch_size=1):
|
|
dataset_types = (np.int32, np.int32, np.int32, np.int32, np.int32, np.int32, np.int32)
|
|
dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1),
|
|
(batch_size, 20), (batch_size, 20), (batch_size, 20))
|
|
|
|
dataset = MindData(size=2, batch_size=batch_size, np_types=dataset_types,
|
|
output_shapes=dataset_shapes, input_indexs=(0, 1))
|
|
return dataset
|
|
|
|
|
|
def test_dataset_helper_dataset_sink_mode_str():
|
|
dataset = get_dataset(32)
|
|
with pytest.raises(TypeError):
|
|
DatasetHelper(dataset, dataset_sink_mode="True")
|
|
|
|
|
|
def test_dataset_helper_dataset_sink_mode_int():
|
|
dataset = get_dataset(32)
|
|
with pytest.raises(TypeError):
|
|
DatasetHelper(dataset, dataset_sink_mode=1)
|
|
|
|
|
|
def test_dataset_helper_sink_size_bool():
|
|
dataset = get_dataset(32)
|
|
with pytest.raises(TypeError):
|
|
DatasetHelper(dataset, dataset_sink_mode=True, sink_size=True)
|
|
|
|
|
|
def test_dataset_helper_sink_size_float():
|
|
dataset = get_dataset(32)
|
|
with pytest.raises(TypeError):
|
|
DatasetHelper(dataset, dataset_sink_mode=True, sink_size=1.0)
|
|
|
|
|
|
def test_dataset_helper_sink_size_negative():
|
|
dataset = get_dataset(32)
|
|
with pytest.raises(ValueError):
|
|
DatasetHelper(dataset, dataset_sink_mode=True, sink_size=-2)
|
|
|
|
|
|
def test_dataset_iter_normal():
|
|
dataset = get_dataset(32)
|
|
dataset_helper = DatasetHelper(dataset, dataset_sink_mode=False)
|
|
count = 0
|
|
for _ in range(2):
|
|
for _ in dataset_helper:
|
|
count += 1
|
|
dataset.reset()
|
|
assert count == 6
|
|
|
|
|
|
@pytest.mark.skipif('not context.get_context("enable_ge")')
|
|
def test_dataset_iter_ge():
|
|
init()
|
|
dataset = get_dataset(32)
|
|
dataset_helper = DatasetHelper(dataset, dataset_sink_mode=True, sink_size=10)
|
|
count = 0
|
|
for _ in range(2):
|
|
for _ in dataset_helper:
|
|
count += 1
|
|
assert count == 2
|
|
|
|
|
|
@pytest.mark.skipif('context.get_context("enable_ge")')
|
|
def test_dataset_iter_ms_loop_sink():
|
|
init()
|
|
context.set_context(enable_loop_sink=True)
|
|
dataset = get_dataset(32)
|
|
dataset_helper = DatasetHelper(dataset, dataset_sink_mode=True, sink_size=10)
|
|
count = 0
|
|
for _ in range(2):
|
|
for inputs in dataset_helper:
|
|
count += 1
|
|
assert inputs == tuple()
|
|
assert count == 2
|
|
|
|
|
|
@pytest.mark.skipif('context.get_context("enable_ge")')
|
|
def test_dataset_iter_ms():
|
|
init()
|
|
context.set_context(enable_loop_sink=False)
|
|
dataset = get_dataset(32)
|
|
DatasetHelper(dataset, dataset_sink_mode=True, sink_size=10)
|