forked from mindspore-Ecosystem/mindspore
266 lines
11 KiB
Python
266 lines
11 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.context import set_auto_parallel_context, reset_auto_parallel_context
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
# model_parallel test
|
|
def test_six_matmul_save():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6):
|
|
predict = self.network(x1, x6)
|
|
return self.loss(predict)
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6):
|
|
return C.grad_all(self.network)(x1, x6)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul2 = P.MatMul().set_strategy(strategy2)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul().set_strategy(strategy6)
|
|
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
|
|
self.weight2 = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight2")
|
|
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
|
|
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
|
|
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
|
|
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
|
|
|
|
def construct(self, x1, x6):
|
|
out = self.matmul1(x1, self.weight1)
|
|
out = self.matmul2(out, self.weight2)
|
|
out = self.matmul3(out, self.weight3)
|
|
out = self.matmul4(out, self.weight4)
|
|
out = self.matmul5(out, self.weight5)
|
|
out = out + self.weight6
|
|
out = self.matmul6(out, x6)
|
|
return out
|
|
|
|
reset_auto_parallel_context()
|
|
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_save_file="./strategy_stage1.ckpt")
|
|
strategy1 = ((8, 1), (1, 1))
|
|
strategy2 = ((1, 8), (8, 1))
|
|
strategy3 = ((2, 2), (2, 2))
|
|
strategy4 = ((1, 1), (1, 8))
|
|
strategy5 = ((4, 2), (2, 1))
|
|
strategy6 = ((4, 1), (1, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x6)
|
|
|
|
|
|
# remove matmul2, add matmul7
|
|
def test_six_matmul_load():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6, x7):
|
|
predict = self.network(x1, x6, x7)
|
|
return self.loss(predict)
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6, x7):
|
|
return C.grad_all(self.network)(x1, x6, x7)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul().set_strategy(strategy6)
|
|
self.matmul7 = P.MatMul().set_strategy(strategy7)
|
|
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
|
|
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
|
|
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
|
|
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
|
|
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
|
|
|
|
def construct(self, x1, x6, x7):
|
|
out = self.matmul1(x1, self.weight1)
|
|
out = self.matmul3(out, self.weight3)
|
|
out = self.matmul4(out, self.weight4)
|
|
out = self.matmul5(out, self.weight5)
|
|
out = out + self.weight6
|
|
out = self.matmul6(out, x6)
|
|
out = self.matmul7(out, x7)
|
|
return out
|
|
|
|
reset_auto_parallel_context()
|
|
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_load_file="./strategy_stage1.ckpt")
|
|
strategy1 = ((8, 1), (1, 1))
|
|
strategy3 = ((8, 1), (1, 1))
|
|
strategy4 = ((8, 1), (1, 1))
|
|
strategy5 = ((8, 1), (1, 1))
|
|
strategy6 = ((8, 1), (1, 1))
|
|
strategy7 = ((8, 1), (1, 1))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x6, x7)
|
|
|
|
|
|
# model_parallel test
|
|
def test_six_matmul_save_auto():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6):
|
|
predict = self.network(x1, x6)
|
|
return self.loss(predict)
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6):
|
|
return C.grad_all(self.network)(x1, x6)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul()
|
|
self.matmul2 = P.MatMul()
|
|
self.matmul3 = P.MatMul()
|
|
self.matmul4 = P.MatMul()
|
|
self.matmul5 = P.MatMul()
|
|
self.matmul6 = P.MatMul()
|
|
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
|
|
self.weight2 = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight2")
|
|
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
|
|
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
|
|
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
|
|
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
|
|
|
|
def construct(self, x1, x6):
|
|
out = self.matmul1(x1, self.weight1)
|
|
out = self.matmul2(out, self.weight2)
|
|
out = self.matmul3(out, self.weight3)
|
|
out = self.matmul4(out, self.weight4)
|
|
out = self.matmul5(out, self.weight5)
|
|
out = out + self.weight6
|
|
out = self.matmul6(out, x6)
|
|
return out
|
|
|
|
reset_auto_parallel_context()
|
|
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_save_file="./strategy_stage1_auto.ckpt")
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x6)
|
|
|
|
|
|
# remove matmul2, add matmul7
|
|
def test_six_matmul_load_auto():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6, x7):
|
|
predict = self.network(x1, x6, x7)
|
|
return self.loss(predict)
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x6, x7):
|
|
return C.grad_all(self.network)(x1, x6, x7)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy3, strategy4, strategy5):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul()
|
|
self.matmul7 = P.MatMul()
|
|
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
|
|
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
|
|
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
|
|
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
|
|
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
|
|
|
|
def construct(self, x1, x6, x7):
|
|
out = self.matmul1(x1, self.weight1)
|
|
out = self.matmul3(out, self.weight3)
|
|
out = self.matmul4(out, self.weight4)
|
|
out = self.matmul5(out, self.weight5)
|
|
out = out + self.weight6
|
|
out = self.matmul6(out, x6)
|
|
out = self.matmul7(out, x7)
|
|
return out
|
|
|
|
reset_auto_parallel_context()
|
|
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_load_file="./strategy_stage1_auto.ckpt")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy3 = ((2, 2), (2, 2))
|
|
strategy4 = ((2, 2), (2, 2))
|
|
strategy5 = ((2, 2), (2, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5)))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x6, x7)
|