forked from mindspore-Ecosystem/mindspore
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
from mindspore import context, Tensor
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class Net(Cell):
|
|
def __init__(self, strategy1=None, strategy2=None, axis=()):
|
|
super().__init__()
|
|
self.squeeze = P.Squeeze(axis=axis).set_strategy(strategy1)
|
|
self.mul = P.Mul().set_strategy(strategy2)
|
|
|
|
def construct(self, x, b):
|
|
out = self.squeeze(x)
|
|
out = self.mul(out, b)
|
|
return out
|
|
|
|
|
|
_x = Tensor(np.ones([64, 1, 32, 1]), dtype=ms.float32)
|
|
_b = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
|
def compile_net(net):
|
|
net.set_auto_parallel()
|
|
_executor.compile(net, _x, _b)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def test_squeeze_data_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((16, 1, 1, 1),)
|
|
strategy2 = ((16, 1), (16, 1))
|
|
net = Net(strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_squeeze_model_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((1, 1, 16, 1),)
|
|
strategy2 = ((1, 16), (1, 16))
|
|
net = Net(strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_squeeze_specified_axis():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((4, 1, 4, 1),)
|
|
strategy2 = ((8, 2), (8, 2))
|
|
net = Net(strategy1, strategy2, (1, 3))
|
|
compile_net(net)
|
|
|
|
|
|
def test_squeeze_auto_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
|
net = Net()
|
|
compile_net(net)
|
|
|
|
|
|
def test_squeeze_repeat_calc():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((1, 1, 8, 1),)
|
|
strategy2 = ((2, 8), (2, 8))
|
|
net = Net(strategy1, strategy2)
|
|
compile_net(net)
|