diff --git a/tests/st/networks/models/bert/test_bert_tdt_lossscale.py b/tests/st/networks/models/bert/bert_performance/test_bert_tdt_lossscale.py similarity index 73% rename from tests/st/networks/models/bert/test_bert_tdt_lossscale.py rename to tests/st/networks/models/bert/bert_performance/test_bert_tdt_lossscale.py index 150bc0fd410..2b84daed517 100644 --- a/tests/st/networks/models/bert/test_bert_tdt_lossscale.py +++ b/tests/st/networks/models/bert/bert_performance/test_bert_tdt_lossscale.py @@ -17,12 +17,8 @@ import os import time - import numpy as np import pytest -from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell -from src.bert_model import BertConfig - import mindspore.common.dtype as mstype import mindspore.dataset.engine.datasets as de import mindspore.dataset.transforms.c_transforms as C @@ -35,6 +31,10 @@ from mindspore.train.callback import Callback from mindspore.train.loss_scale_manager import DynamicLossScaleManager from mindspore.train.model import Model import mindspore.nn.learning_rate_schedule as lr_schedules +from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertNetworkWithLoss +from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertTrainOneStepWithLossScaleCell +from model_zoo.official.nlp.bert.src.bert_model import BertConfig + _current_dir = os.path.dirname(os.path.realpath(__file__)) DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] @@ -177,74 +177,6 @@ class TimeMonitor(Callback): self.epoch_mseconds_list.append(epoch_mseconds) self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) -@pytest.mark.level0 -@pytest.mark.platform_arm_ascend_training -@pytest.mark.platform_x86_ascend_training -@pytest.mark.env_onecard -def test_bert_percision(): - """test bert percision""" - context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) - ds, new_repeat_count, _ = me_de_train_dataset() - version = os.getenv('VERSION', 'large') - batch_size = 16 - config = get_config(version=version, batch_size=batch_size) - netwithloss = BertNetworkWithLoss(config, True) - lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count, - learning_rate=5e-5, end_learning_rate=1e-9, - power=10.0, warmup_steps=0) - decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower() - no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower() - decay_params = list(filter(decay_filter, netwithloss.trainable_params())) - other_params = list(filter(no_decay_filter, netwithloss.trainable_params())) - group_params = [{'params': decay_params, 'weight_decay': 0.01}, - {'params': other_params}, - {'order_params': netwithloss.trainable_params()}] - optimizer = Lamb(group_params, lr) - scale_window = 3 - scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) - netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, - scale_update_cell=scale_manager.get_update_cell()) - netwithgrads.set_train(True) - model = Model(netwithgrads) - callback = ModelCallback() - params = netwithloss.trainable_params() - for param in params: - value = param.default_input - name = param.name - if isinstance(value, Tensor): - if name.split('.')[-1] in ['weight']: - if name.split('.')[-3] in ['cls2']: - logger.info("***************** BERT param name is 1 {}".format(name)) - param.default_input = weight_variable(value.asnumpy().shape) - else: - logger.info("***************** BERT param name is 2 {}".format(name)) - tempshape = value.asnumpy().shape - shape = (tempshape[1], tempshape[0]) - weight_value = weight_variable(shape).asnumpy() - param.default_input = Tensor(np.transpose(weight_value, [1, 0])) - else: - logger.info("***************** BERT param name is 3 {}".format(name)) - param.default_input = weight_variable(value.asnumpy().shape) - model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False) - - # assertion occurs while the loss value, overflow state or loss_scale value is wrong - loss_value = np.array(callback.loss_list) - assert np.allclose(loss_value[0], 12.206575, 0, 0.000001) - - expect_loss_value = [12.206575, 11.865044, 11.828129, 11.826707, 11.82108, 12.407423, 12.005459, - 12.621225, 12.222903, 12.427446] - print("loss value: {}".format(loss_value)) - assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) - - overflow = np.array(callback.overflow_list) - expect_overflow = [False, False, False, True, False, False, False, True, False, False] - print("overflow: {}".format(overflow)) - assert (overflow == expect_overflow).all() - - loss_scale = np.array(callback.lossscale_list) - expect_loss_scale = [65536.0, 65536.0, 131072.0, 65536.0, 65536.0, 65536.0, 131072.0, 65536.0, 65536.0, 65536.0] - print("loss scale: {}".format(loss_scale)) - assert np.allclose(loss_scale, expect_loss_scale, 0, 0) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @@ -317,15 +249,14 @@ def test_bert_performance(): assert np.allclose(loss_scale, expect_loss_scale, 0, 0) epoch_mseconds = np.array(time_monitor_callback.epoch_mseconds_list)[2] - expect_epoch_mseconds = 1600 + expect_epoch_mseconds = 1400 print("epoch mseconds: {}".format(epoch_mseconds)) assert epoch_mseconds <= expect_epoch_mseconds + 5 per_step_mseconds = np.array(time_monitor_callback.per_step_mseconds_list)[2] - expect_per_step_mseconds = 16 + expect_per_step_mseconds = 14 print("per step mseconds: {}".format(per_step_mseconds)) assert per_step_mseconds <= expect_per_step_mseconds + 1 if __name__ == '__main__': - test_bert_percision() test_bert_performance() diff --git a/tests/st/networks/models/bert/bert_precision/test_bert_tdt_lossscale.py b/tests/st/networks/models/bert/bert_precision/test_bert_tdt_lossscale.py new file mode 100644 index 00000000000..8511b5b3a5e --- /dev/null +++ b/tests/st/networks/models/bert/bert_precision/test_bert_tdt_lossscale.py @@ -0,0 +1,251 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""train bert network without lossscale""" + +import os +import time +import numpy as np +import pytest +import mindspore.common.dtype as mstype +import mindspore.dataset.engine.datasets as de +import mindspore.dataset.transforms.c_transforms as C +from mindspore import context +from mindspore import log as logger +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor +from mindspore.nn.optim import Lamb +from mindspore.train.callback import Callback +from mindspore.train.loss_scale_manager import DynamicLossScaleManager +from mindspore.train.model import Model +import mindspore.nn.learning_rate_schedule as lr_schedules +from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertNetworkWithLoss +from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertTrainOneStepWithLossScaleCell +from model_zoo.official.nlp.bert.src.bert_model import BertConfig + + +_current_dir = os.path.dirname(os.path.realpath(__file__)) +DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] +SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json" + + +def get_config(version='base', batch_size=1): + """get config""" + if version == 'base': + bert_config = BertConfig( + batch_size=batch_size, + seq_length=128, + vocab_size=21136, + hidden_size=768, + num_hidden_layers=2, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + use_relative_positions=True, + input_mask_from_dataset=True, + token_type_ids_from_dataset=True, + dtype=mstype.float32, + compute_type=mstype.float32) + elif version == 'large': + bert_config = BertConfig( + batch_size=batch_size, + seq_length=128, + vocab_size=21136, + hidden_size=1024, + num_hidden_layers=2, + num_attention_heads=16, + intermediate_size=4096, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + use_relative_positions=False, + input_mask_from_dataset=True, + token_type_ids_from_dataset=True, + dtype=mstype.float32, + compute_type=mstype.float16, + enable_fused_layernorm=False) + else: + bert_config = BertConfig(batch_size=batch_size) + return bert_config + + +def me_de_train_dataset(sink_mode=False): + """test me de train dataset""" + # apply repeat operations + repeat_count = 1 + sink_size = -1 + batch_size = 16 + ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", + "next_sentence_labels", "masked_lm_positions", + "masked_lm_ids", "masked_lm_weights"], shuffle=False) + type_cast_op = C.TypeCast(mstype.int32) + new_repeat_count = repeat_count + if sink_mode: + sink_size = 100 + new_repeat_count = 3 + ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) + ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) + ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) + ds = ds.map(input_columns="segment_ids", operations=type_cast_op) + ds = ds.map(input_columns="input_mask", operations=type_cast_op) + ds = ds.map(input_columns="input_ids", operations=type_cast_op) + # apply batch operations + ds = ds.batch(batch_size, drop_remainder=True) + logger.info("data size: {}".format(ds.get_dataset_size())) + logger.info("repeat_count: {}".format(ds.get_repeat_count())) + return ds, new_repeat_count, sink_size + + +def weight_variable(shape): + """weight variable""" + np.random.seed(1) + ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32) + return Tensor(ones) + + +class BertLearningRate(lr_schedules.LearningRateSchedule): + def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power): + super(BertLearningRate, self).__init__() + self.warmup_flag = False + if warmup_steps > 0: + self.warmup_flag = True + self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps) + self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power) + self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32)) + + self.greater = P.Greater() + self.one = Tensor(np.array([1.0]).astype(np.float32)) + self.cast = P.Cast() + + def construct(self, global_step): + decay_lr = self.decay_lr(global_step) + if self.warmup_flag: + is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32) + warmup_lr = self.warmup_lr(global_step) + lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr + else: + lr = decay_lr + return lr + + +class ModelCallback(Callback): + def __init__(self): + super(ModelCallback, self).__init__() + self.loss_list = [] + self.overflow_list = [] + self.lossscale_list = [] + + def step_end(self, run_context): + cb_params = run_context.original_args() + self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0]) + self.overflow_list.append(cb_params.net_outputs[1].asnumpy()) + self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) + print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) + +class TimeMonitor(Callback): + """Time Monitor.""" + def __init__(self, data_size): + super(TimeMonitor, self).__init__() + self.data_size = data_size + self.epoch_mseconds_list = [] + self.per_step_mseconds_list = [] + def epoch_begin(self, run_context): + self.epoch_time = time.time() + + def epoch_end(self, run_context): + epoch_mseconds = (time.time() - self.epoch_time) * 1000 + self.epoch_mseconds_list.append(epoch_mseconds) + self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_bert_percision(): + """test bert percision""" + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) + ds, new_repeat_count, _ = me_de_train_dataset() + version = os.getenv('VERSION', 'large') + batch_size = 16 + config = get_config(version=version, batch_size=batch_size) + netwithloss = BertNetworkWithLoss(config, True) + lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count, + learning_rate=5e-5, end_learning_rate=1e-9, + power=10.0, warmup_steps=0) + decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower() + no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower() + decay_params = list(filter(decay_filter, netwithloss.trainable_params())) + other_params = list(filter(no_decay_filter, netwithloss.trainable_params())) + group_params = [{'params': decay_params, 'weight_decay': 0.01}, + {'params': other_params}, + {'order_params': netwithloss.trainable_params()}] + optimizer = Lamb(group_params, lr) + scale_window = 3 + scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) + netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, + scale_update_cell=scale_manager.get_update_cell()) + netwithgrads.set_train(True) + model = Model(netwithgrads) + callback = ModelCallback() + params = netwithloss.trainable_params() + for param in params: + value = param.default_input + name = param.name + if isinstance(value, Tensor): + if name.split('.')[-1] in ['weight']: + if name.split('.')[-3] in ['cls2']: + logger.info("***************** BERT param name is 1 {}".format(name)) + param.default_input = weight_variable(value.asnumpy().shape) + else: + logger.info("***************** BERT param name is 2 {}".format(name)) + tempshape = value.asnumpy().shape + shape = (tempshape[1], tempshape[0]) + weight_value = weight_variable(shape).asnumpy() + param.default_input = Tensor(np.transpose(weight_value, [1, 0])) + else: + logger.info("***************** BERT param name is 3 {}".format(name)) + param.default_input = weight_variable(value.asnumpy().shape) + model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False) + + # assertion occurs while the loss value, overflow state or loss_scale value is wrong + loss_value = np.array(callback.loss_list) + assert np.allclose(loss_value[0], 12.2065868, 0, 0.000001) + + expect_loss_value = [12.2065868, 11.8651543, 11.8282356, 11.8266964, 11.8210478, 12.4073524, 12.0055466, + 12.6212320, 12.2229223, 12.4272099] + print("loss value: {}".format(loss_value)) + assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) + + overflow = np.array(callback.overflow_list) + expect_overflow = [False, False, False, True, False, False, False, True, False, False] + print("overflow: {}".format(overflow)) + assert (overflow == expect_overflow).all() + + loss_scale = np.array(callback.lossscale_list) + expect_loss_scale = [65536.0, 65536.0, 131072.0, 65536.0, 65536.0, 65536.0, 131072.0, 65536.0, 65536.0, 65536.0] + print("loss scale: {}".format(loss_scale)) + assert np.allclose(loss_scale, expect_loss_scale, 0, 0) + + +if __name__ == '__main__': + test_bert_percision()