forked from mindspore-Ecosystem/mindspore
!2229 add ftrl optimizer
Merge pull request !2229 from zyli2020/add_ftrl_op
This commit is contained in:
commit
fe797aaf10
|
@ -0,0 +1,87 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/cuda_impl/ftrl_impl.cuh"
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T PowFunc(T x, T y) {
|
||||
return pow(x, y);
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ __forceinline__ half PowFunc(half x, half y) {
|
||||
return __float2half(pow(__half2float(x), __half2float(y)));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ bool CompareFunc(T x, T y) {
|
||||
return abs(x) > y;
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ __forceinline__ bool CompareFunc(half x, half y) {
|
||||
return abs(__half2float(x)) > __half2float(y);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T Sgn(T x) {
|
||||
return static_cast<T>(x != 0 ? (x > 0 ? 1 : -1) : 0);
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ __forceinline__ half Sgn(half x) {
|
||||
return __float2half(__half2float(x) != 0 ? (__half2float(x) > 0 ? 1 : -1) : 0);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void ApplyFtrlKernel(const size_t size, const T *gradient, const T *learning_rate,
|
||||
const T *l1_regularization, const T *l2_regularization, const T *learning_rate_power,
|
||||
T *variable, T *accumulation, T *linear) {
|
||||
const T two = static_cast<T>(2.0);
|
||||
const T learning_rate_power_val = -learning_rate_power[0];
|
||||
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
const T cur_accumulation = accumulation[i] + gradient[i] * gradient[i];
|
||||
const T accumulation_power = PowFunc(accumulation[i], learning_rate_power_val);
|
||||
const T cur_accumulation_power = PowFunc(cur_accumulation, learning_rate_power_val);
|
||||
const T sigma = (cur_accumulation_power - accumulation_power) / learning_rate[0];
|
||||
|
||||
linear[i] += gradient[i] - sigma * variable[i];
|
||||
variable[i] = CompareFunc(linear[i], l1_regularization[0])
|
||||
? ((l1_regularization[0] * Sgn(linear[i]) - linear[i]) /
|
||||
(cur_accumulation_power / learning_rate[0] + two * l2_regularization[0]))
|
||||
: static_cast<T>(0);
|
||||
accumulation[i] = cur_accumulation;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ApplyFtrl(const size_t size, const T *gradient, const T *learning_rate, const T *l1_regularization,
|
||||
const T *l2_regularization, const T *learning_rate_power, T *variable, T *accumulation, T *linear,
|
||||
cudaStream_t cuda_stream) {
|
||||
ApplyFtrlKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, gradient, learning_rate, l1_regularization,
|
||||
l2_regularization, learning_rate_power, variable,
|
||||
accumulation, linear);
|
||||
}
|
||||
|
||||
template void ApplyFtrl<float>(const size_t size, const float *gradient, const float *learning_rate,
|
||||
const float *l1_regularization, const float *l2_regularization,
|
||||
const float *learning_rate_power, float *variable, float *accumulation, float *linear,
|
||||
cudaStream_t cuda_stream);
|
||||
template void ApplyFtrl<half>(const size_t size, const half *gradient, const half *learning_rate,
|
||||
const half *l1_regularization, const half *l2_regularization,
|
||||
const half *learning_rate_power, half *variable, half *accumulation, half *linear,
|
||||
cudaStream_t cuda_stream);
|
|
@ -0,0 +1,26 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_FTRL_IMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_FTRL_IMPL_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
template <typename T>
|
||||
void ApplyFtrl(const size_t size, const T *gradient, const T *learning_rate, const T *l1_regularization,
|
||||
const T *l2_regularization, const T *learning_rate_power, T *variable, T *accumulation, T *linear,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_FTRL_IMPL_H_
|
|
@ -0,0 +1,46 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/ftrl_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(ApplyFtrl,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
FtrlGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(ApplyFtrl,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
FtrlGpuKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_FTRL_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_FTRL_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/ftrl_impl.cuh"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class FtrlGpuKernel : public GpuKernel {
|
||||
public:
|
||||
FtrlGpuKernel()
|
||||
: variable_size_(0),
|
||||
accumulation_size_(0),
|
||||
linear_size_(0),
|
||||
gradient_size_(0),
|
||||
learning_rate_size_(0),
|
||||
l1_regularization_size_(0),
|
||||
l2_regularization_size_(0),
|
||||
learning_rate_power_size_(0) {}
|
||||
|
||||
~FtrlGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
|
||||
void *stream_ptr) override {
|
||||
T *variable = GetDeviceAddress<T>(inputs, 0);
|
||||
T *accumulation = GetDeviceAddress<T>(inputs, 1);
|
||||
T *linear = GetDeviceAddress<T>(inputs, 2);
|
||||
T *gradient = GetDeviceAddress<T>(inputs, 3);
|
||||
T *learning_rate = GetDeviceAddress<T>(inputs, 4);
|
||||
T *l1_regularization = GetDeviceAddress<T>(inputs, 5);
|
||||
T *l2_regularization = GetDeviceAddress<T>(inputs, 6);
|
||||
T *learning_rate_power = GetDeviceAddress<T>(inputs, 7);
|
||||
ApplyFtrl(inputs[0]->size / sizeof(T), gradient, learning_rate, l1_regularization, l2_regularization,
|
||||
learning_rate_power, variable, accumulation, linear, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 8) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but ftrl needs 8 inputs.";
|
||||
return false;
|
||||
}
|
||||
|
||||
variable_size_ = sizeof(T);
|
||||
accumulation_size_ = sizeof(T);
|
||||
linear_size_ = sizeof(T);
|
||||
gradient_size_ = sizeof(T);
|
||||
learning_rate_size_ = sizeof(T);
|
||||
l1_regularization_size_ = sizeof(T);
|
||||
l2_regularization_size_ = sizeof(T);
|
||||
learning_rate_power_size_ = sizeof(T);
|
||||
|
||||
auto variable_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < variable_shape.size(); i++) {
|
||||
variable_size_ *= variable_shape[i];
|
||||
}
|
||||
|
||||
auto accumulation_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
for (size_t i = 0; i < accumulation_shape.size(); i++) {
|
||||
accumulation_size_ *= accumulation_shape[i];
|
||||
}
|
||||
|
||||
auto linear_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
for (size_t i = 0; i < linear_shape.size(); i++) {
|
||||
linear_size_ *= linear_shape[i];
|
||||
}
|
||||
|
||||
auto gradient_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3);
|
||||
for (size_t i = 0; i < gradient_shape.size(); i++) {
|
||||
gradient_size_ *= gradient_shape[i];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(variable_size_);
|
||||
input_size_list_.push_back(accumulation_size_);
|
||||
input_size_list_.push_back(linear_size_);
|
||||
input_size_list_.push_back(gradient_size_);
|
||||
input_size_list_.push_back(learning_rate_size_);
|
||||
input_size_list_.push_back(l1_regularization_size_);
|
||||
input_size_list_.push_back(l2_regularization_size_);
|
||||
input_size_list_.push_back(learning_rate_power_size_);
|
||||
output_size_list_.push_back(0);
|
||||
}
|
||||
|
||||
private:
|
||||
size_t variable_size_;
|
||||
size_t accumulation_size_;
|
||||
size_t linear_size_;
|
||||
size_t gradient_size_;
|
||||
size_t learning_rate_size_;
|
||||
size_t l1_regularization_size_;
|
||||
size_t l2_regularization_size_;
|
||||
size_t learning_rate_power_size_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_FTRL_GPU_KERNEL_H_
|
|
@ -0,0 +1,78 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import FTRL
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class NetFtrl(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetFtrl, self).__init__()
|
||||
self.batch_size = 1
|
||||
self.reshape = P.Reshape()
|
||||
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
|
||||
self.fc1 = Dense(16, 10, weight_init=weight)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = self.reshape(input_x, (self.batch_size, -1))
|
||||
output = self.fc1(output)
|
||||
return output
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ftrl():
|
||||
epoch = 3
|
||||
net = NetFtrl()
|
||||
optimizer = FTRL(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), learning_rate=0.01)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(
|
||||
net_with_criterion, optimizer)
|
||||
train_network.set_train()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
losses1 = []
|
||||
for _ in range(epoch):
|
||||
data = Tensor(np.arange(0, 16).reshape(
|
||||
1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.array([0]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses1.append(loss.asnumpy())
|
||||
assert losses1[0] > losses1[1]
|
||||
assert losses1[1] > losses1[2]
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
losses2 = []
|
||||
for _ in range(epoch):
|
||||
data = Tensor(np.arange(0, 16).reshape(
|
||||
1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.array([0]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses2.append(loss.asnumpy())
|
||||
assert losses2[0] > losses2[1]
|
||||
assert losses2[1] > losses2[2]
|
Loading…
Reference in New Issue