handle repeated calculation

This commit is contained in:
yangzhenzhang 2020-10-16 15:57:56 +08:00
parent 712d02a2fa
commit fc4ed975c4
11 changed files with 161 additions and 20 deletions

View File

@ -350,7 +350,8 @@ Status GatherV2PInfo::InferDevMatrixShape() {
auto param_product = std::accumulate(param_strategy.begin(), param_strategy.end(), 1, std::multiplies<int>());
auto index_product = std::accumulate(index_strategy.begin(), index_strategy.end(), 1, std::multiplies<int>());
if (param_product * index_product < SizeToInt(dev_num)) {
out_dev_matrix_shape_.insert(out_dev_matrix_shape_.begin(), SizeToInt(dev_num / (param_product * index_product)));
// add the repeated calculation num to the last dimension of dev matrix
out_dev_matrix_shape_.push_back(SizeToInt(dev_num / (param_product * index_product)));
}
return SUCCESS;

View File

@ -73,6 +73,7 @@ Status OneHotInfo::InferDevMatrixShape() {
dev_matrix_shape_.push_back(input_strategy[0]); // the features is splittable
dev_matrix_shape_.push_back(input_strategy[1]); // the depth is un-splittable
}
old_dev_matrix_back_ = dev_matrix_shape_.back();
return SUCCESS;
}
@ -134,7 +135,7 @@ Status OneHotInfo::InferTensorInfo() {
Status OneHotInfo::ExtractInputInfo() {
CheckGlobalDeviceManager();
rank_ = g_device_manager->global_rank();
mod_rank_ = rank_ % dev_matrix_shape_.back();
mod_rank_ = rank_ % old_dev_matrix_back_;
if (!cnode_) {
MS_LOG(ERROR) << "Failure:OneHot cnode_ is nullptr";
return FAILED;
@ -162,13 +163,13 @@ Status OneHotInfo::ExtractInputInfo() {
MS_LOG(ERROR) << "OneHot Primitive depth type must be int";
return FAILED;
}
classes_each_device_ = total_class_number_ / dev_matrix_shape_.back();
classes_each_device_ = total_class_number_ / old_dev_matrix_back_;
return SUCCESS;
}
Status OneHotInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
if (dev_matrix_shape_.back() == 1) {
if (old_dev_matrix_back_ == 1) {
replace_graph_ = nullptr;
return SUCCESS;
}

View File

@ -60,6 +60,7 @@ class OneHotInfo : public OperatorInfo {
int32_t rank_ = 0;
int32_t total_class_number_ = 1;
int32_t classes_each_device_ = 1;
int32_t old_dev_matrix_back_ = 1;
ValuePtr axis_value_ptr_;
int32_t mod_rank_ = 0;
};

View File

@ -164,14 +164,42 @@ Status OperatorInfo::InferRepeatedCalcInfo() {
return SUCCESS;
}
// if repeated calculation, need to set the repeated_calc_num as the first dimension of dev-matrix,
// only use for infer tensor layout
// If repeated calculation, need to set the repeated_calc_num as the last dimension of dev-matrix,
// only use for infer tensor layout. Because if the previous shard is (a, b), and the next shard is
// (a, 1), adding the repeated_calc_num to the last dimension of dev-matrix, there is no need to redistribution.
void OperatorInfo::SetRepeatedCalcDevMatrix() {
if (repeated_calc_num_ <= 1) {
return;
}
(void)dev_matrix_shape_.insert(dev_matrix_shape_.begin(), repeated_calc_num_);
(void)dev_matrix_shape_.push_back(repeated_calc_num_);
}
// If repeated calculation, since the repeated_calc_num is added to the last dimension of the dev-matrix,
// the index value of tensor map needs to be increased by 1.
void OperatorInfo::ResetTensorMapIfRepeatedCalc() {
if (repeated_calc_num_ <= 1) {
return;
}
MS_LOG(DEBUG) << name_ << ": the repeated calc num is " << repeated_calc_num_ << ", and reset the tensor maps";
for (auto &tensor_map : inputs_tensor_map_) {
for (auto &element : tensor_map) {
if (element == MAP_NONE) {
continue;
}
element += 1;
}
}
for (auto &tensor_map : outputs_tensor_map_) {
for (auto &element : tensor_map) {
if (element == MAP_NONE) {
continue;
}
element += 1;
}
}
}
// use for loss repeated calculation
@ -454,7 +482,7 @@ Status OperatorInfo::InitForCostModelWithAutoRepeatCalc(const StrategyPtr &strat
return FAILED;
}
// if repeated calculation, need to set the repeated_calc_num as the first dimension of dev-matrix for layout
// if repeated calculation, need to set the repeated_calc_num as the last dimension of dev-matrix for layout
SetRepeatedCalcDevMatrix();
if (InferTensorMap() != SUCCESS) {
@ -462,6 +490,8 @@ Status OperatorInfo::InitForCostModelWithAutoRepeatCalc(const StrategyPtr &strat
return FAILED;
}
ResetTensorMapIfRepeatedCalc();
if (InferTensorInfo() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": InferTensorInfo failed.";
return FAILED;

View File

@ -184,6 +184,7 @@ class OperatorInfo {
Status CheckStrategyValue(const StrategyPtr &strategy, const Shapes &inputs_shape);
void SetDeviceListByStrategy();
void SetRepeatedCalcDevMatrix();
void ResetTensorMapIfRepeatedCalc();
Status CreateGroupByDim(size_t axis, std::vector<Group> *group);
Status InferAttrs();
void ResetQueueMember();

View File

@ -83,7 +83,7 @@ TEST_F(TestOneHotInfo, InferDevMatrixShape2) {
ASSERT_EQ(status, SUCCESS);
Shape dev_matrix_shape = onehot_info->dev_matrix_shape();
Shape expect = {2, 4, 1};
Shape expect = {4, 1, 2};
ASSERT_EQ(dev_matrix_shape, expect);
}

View File

@ -83,7 +83,7 @@ TEST_F(TestOneHotInfo2, InferDevMatrixShape2) {
ASSERT_EQ(status, SUCCESS);
Shape dev_matrix_shape = onehot_info2->dev_matrix_shape();
Shape expect = {2, 4, 1};
Shape expect = {4, 1, 2};
ASSERT_EQ(dev_matrix_shape, expect);
}

View File

@ -70,7 +70,7 @@ TEST_F(TestPReLUInfo, InferDevMatrixShape1) {
prelu->Init(strategy);
Shape dev_matrix_shape = prelu->dev_matrix_shape();
Shape expect = {4, 2, 1, 8, 16};
Shape expect = {2, 1, 8, 16, 4};
ASSERT_EQ(dev_matrix_shape, expect);
}
@ -105,9 +105,9 @@ TEST_F(TestPReLUInfo, GetTensorLayout1) {
std::vector<TensorInfo> inputs = prelu->inputs_tensor_info();
std::vector<TensorInfo> outputs = prelu->outputs_tensor_info();
TensorMap input_expect = {3, 2, 1, 0};
TensorMap input_expect = {4, 3, 2, 1};
TensorMap param_expect = {2};
TensorMap output_expect = {3, 2, 1, 0};
TensorMap output_expect = {4, 3, 2, 1};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo param_tensor_info = inputs.at(1);
@ -175,7 +175,7 @@ TEST_F(TestPReLUInfo, InferDevMatrixShape_2d1) {
prelu_2d->Init(strategy);
Shape dev_matrix_shape = prelu_2d->dev_matrix_shape();
Shape expect = {8, 128, 1};
Shape expect = {128, 1, 8};
ASSERT_EQ(dev_matrix_shape, expect);
}
@ -210,9 +210,9 @@ TEST_F(TestPReLUInfo, GetTensorLayout_2d1) {
std::vector<TensorInfo> inputs = prelu_2d->inputs_tensor_info();
std::vector<TensorInfo> outputs = prelu_2d->outputs_tensor_info();
TensorMap input_expect = {1, 0};
TensorMap input_expect = {2, 1};
TensorMap param_expect = {0};
TensorMap output_expect = {1, 0};
TensorMap output_expect = {2, 1};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo param_tensor_info = inputs.at(1);

View File

@ -74,7 +74,7 @@ TEST_F(TestReshapeInfo, InferDevMatrixShape1) {
reshape->Init(strategy);
Shape dev_matrix_shape = reshape->dev_matrix_shape();
Shape expect = {8, 4};
Shape expect = {4, 8};
ASSERT_EQ(dev_matrix_shape, expect);
}
@ -139,8 +139,8 @@ TEST_F(TestReshapeInfo, GetTensorLayout1) {
std::vector<TensorInfo> inputs = reshape->inputs_tensor_info();
std::vector<TensorInfo> outputs = reshape->outputs_tensor_info();
TensorMap input_expect = {0, -1, -1, -1};
TensorMap output_expect = {0, -1};
TensorMap input_expect = {1, -1, -1, -1};
TensorMap output_expect = {1, -1};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo output_tensor_info = outputs.at(0);

View File

@ -85,7 +85,7 @@ TEST_F(TestTransposeInfo, InferDevMatrixShape2) {
transpose->Init(strategy);
Shape dev_matrix_shape = transpose->dev_matrix_shape();
Shape expect = {8, 4, 1};
Shape expect = {4, 1, 8};
ASSERT_EQ(dev_matrix_shape, expect);
}

View File

@ -0,0 +1,107 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):
net.set_auto_parallel()
_executor.compile(net, x, y, b)
# it has not redistribution
def test_tensoradd_reshape_matmul():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.add = P.TensorAdd().shard(strategy1)
self.reshape = P.Reshape()
self.matmul = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.add(x, y)
out = self.reshape(out, (256, 16))
out = self.matmul(out, b)
return out
context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
strategy1 = ((8, 1, 1), (8, 1, 1))
strategy2 = ((8, 1), (1, 8))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_context(save_graphs=True)
x = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
y = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
b = Tensor(np.ones([16, 16]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_two_matmul():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
strategy1 = ((8, 8), (8, 1))
strategy2 = ((8, 1), (1, 1))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_context(save_graphs=True)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)