forked from mindspore-Ecosystem/mindspore
add GPU operator
This commit is contained in:
parent
0097b270cd
commit
f9a865fd42
|
@ -95,6 +95,34 @@ __global__ void RsqrtKernel(half *input, half *output, size_t count) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void SinKernel(T *input, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = sin(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void SinKernel(half *input, half *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hsin(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void CosKernel(T *input, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = cos(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void CosKernel(half *input, half *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hcos(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ZeroslikeKernel(T *output, size_t count) {
|
||||
T zero = 0.0;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
|
@ -167,6 +195,16 @@ void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
SinKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
CosKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
RsqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
|
@ -193,6 +231,8 @@ template void Negative<float>(float *input, float *output, size_t count, cudaStr
|
|||
template void Reciprocal<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sin<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Cos<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<float>(float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Abs<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
|
@ -203,6 +243,8 @@ template void Negative<half>(half *input, half *output, size_t count, cudaStream
|
|||
template void Reciprocal<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sin<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Cos<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<half>(half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Abs<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -33,6 +33,10 @@ void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
|||
template <typename T>
|
||||
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Abs(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -46,6 +46,14 @@ MS_REG_GPU_KERNEL_ONE(Sqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOut
|
|||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Rsqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
|
|
|
@ -36,6 +36,8 @@ enum UnaryOptype {
|
|||
UNARY_OP_SQUARE,
|
||||
UNARY_OP_SQRT,
|
||||
UNARY_OP_RSQRT,
|
||||
UNARY_OP_SIN,
|
||||
UNARY_OP_COS,
|
||||
UNARY_OP_ABS,
|
||||
UNARY_OP_FLOOR,
|
||||
UNARY_OP_INVALID_TYPE = 255
|
||||
|
@ -48,6 +50,8 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY
|
|||
{"Square", UNARY_OP_SQUARE},
|
||||
{"Sqrt", UNARY_OP_SQRT},
|
||||
{"Rsqrt", UNARY_OP_RSQRT},
|
||||
{"Sin", UNARY_OP_SIN},
|
||||
{"Cos", UNARY_OP_COS},
|
||||
{"Abs", UNARY_OP_ABS},
|
||||
{"Floor", UNARY_OP_FLOOR}};
|
||||
template <typename T>
|
||||
|
@ -100,6 +104,14 @@ class UnaryOpGpuKernel : public GpuKernel {
|
|||
Rsqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_SIN: {
|
||||
Sin(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_COS: {
|
||||
Cos(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ZEROSLIKE: {
|
||||
Zeroslike(output_addr, output_size_ / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_cos():
|
||||
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
output_ms = P.Cos()(Tensor(x_np))
|
||||
output_np = np.cos(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
|
@ -0,0 +1,33 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sin():
|
||||
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
output_ms = P.Sin()(Tensor(x_np))
|
||||
output_np = np.sin(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
Loading…
Reference in New Issue