forked from mindspore-Ecosystem/mindspore
!6688 vgg16 hub support
Merge pull request !6688 from caojian05/ms_master_vgg16_hub
This commit is contained in:
commit
f7150a6dd8
|
@ -0,0 +1,26 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
from src.vgg import vgg16 as VGG16
|
||||
|
||||
|
||||
def vgg16(*args, **kwargs):
|
||||
return VGG16(*args, **kwargs)
|
||||
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
if name == "vgg16":
|
||||
return vgg16(*args, **kwargs)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
|
@ -60,6 +60,7 @@ class Vgg(nn.Cell):
|
|||
num_classes (int): Class numbers. Default: 1000.
|
||||
batch_norm (bool): Whether to do the batchnorm. Default: False.
|
||||
batch_size (int): Batch size. Default: 1.
|
||||
include_top(bool): Whether to include the 3 fully-connected layers at the top of the network. Default: True.
|
||||
|
||||
Returns:
|
||||
Tensor, infer output tensor.
|
||||
|
@ -69,10 +70,12 @@ class Vgg(nn.Cell):
|
|||
>>> num_classes=1000, batch_norm=False, batch_size=1)
|
||||
"""
|
||||
|
||||
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train"):
|
||||
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train",
|
||||
include_top=True):
|
||||
super(Vgg, self).__init__()
|
||||
_ = batch_size
|
||||
self.layers = _make_layer(base, args, batch_norm=batch_norm)
|
||||
self.include_top = include_top
|
||||
self.flatten = nn.Flatten()
|
||||
dropout_ratio = 0.5
|
||||
if not args.has_dropout or phase == "test":
|
||||
|
@ -91,6 +94,7 @@ class Vgg(nn.Cell):
|
|||
|
||||
def construct(self, x):
|
||||
x = self.layers(x)
|
||||
if self.include_top:
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
|
Loading…
Reference in New Issue