!3281 Fix some API description of ops.

Merge pull request !3281 from liuxiao93/fix-api-bug
This commit is contained in:
mindspore-ci-bot 2020-07-22 14:50:07 +08:00 committed by Gitee
commit f6d7d97704
2 changed files with 9 additions and 9 deletions

View File

@ -448,7 +448,7 @@ class Squeeze(PrimitiveWithInfer):
ValueError: If the corresponding dimension of the specified axis does not equal to 1.
Args:
axis (int): Specifies the dimension indexes of shape to be removed, which will remove
axis (Union[int, tuple(int)]): Specifies the dimension indexes of shape to be removed, which will remove
all the dimensions that are equal to 1. If specified, it must be int32 or int64.
Default: (), an empty tuple.
@ -1440,7 +1440,8 @@ class UnsortedSegmentProd(PrimitiveWithInfer):
Inputs:
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
With float16, float32 or int32 data type.
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is :math:`(x_1)`. Data type must be int32.
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is :math:`(x_1)`, the value should be >= 0.
Data type must be int32.
- **num_segments** (int) - The value spcifies the number of distinct `segment_ids`,
should be greater than 0.

View File

@ -3760,12 +3760,12 @@ class ApplyAdagradV2(PrimitiveWithInfer):
update_slots (bool): If `True`, `accum` will be updated. Default: True.
Inputs:
- **var** (Parameter) - Variable to be updated. With float32 or float16 data type.
- **var** (Parameter) - Variable to be updated. With float32 data type.
- **accum** (Parameter) - Accum to be updated. The shape and dtype should be the same as `var`.
With float32 or float16 data type.
- **lr** (Union[Number, Tensor]) - The learning rate value, should be scalar. With float32 or float16 data type.
With float32 data type.
- **lr** (Union[Number, Tensor]) - The learning rate value, should be scalar. With float32 data type.
- **grad** (Tensor) - A tensor for gradient. The shape and dtype should be the same as `var`.
With float32 or float16 data type.
With float32 data type.
Outputs:
Tuple of 2 Tensor, the updated parameters.
@ -3817,9 +3817,8 @@ class ApplyAdagradV2(PrimitiveWithInfer):
def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, grad_dtype):
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
valid_types = [mstype.float16, mstype.float32]
validator.check_tensor_type_same(args, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({'lr': lr_dtype}, valid_types, self.name)
validator.check_tensor_type_same(args, [mstype.float32], self.name)
validator.check_scalar_or_tensor_type_same({'lr': lr_dtype}, [mstype.float32], self.name)
return var_dtype, accum_dtype