forked from mindspore-Ecosystem/mindspore
!3281 Fix some API description of ops.
Merge pull request !3281 from liuxiao93/fix-api-bug
This commit is contained in:
commit
f6d7d97704
|
@ -448,7 +448,7 @@ class Squeeze(PrimitiveWithInfer):
|
|||
ValueError: If the corresponding dimension of the specified axis does not equal to 1.
|
||||
|
||||
Args:
|
||||
axis (int): Specifies the dimension indexes of shape to be removed, which will remove
|
||||
axis (Union[int, tuple(int)]): Specifies the dimension indexes of shape to be removed, which will remove
|
||||
all the dimensions that are equal to 1. If specified, it must be int32 or int64.
|
||||
Default: (), an empty tuple.
|
||||
|
||||
|
@ -1440,7 +1440,8 @@ class UnsortedSegmentProd(PrimitiveWithInfer):
|
|||
Inputs:
|
||||
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
||||
With float16, float32 or int32 data type.
|
||||
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is :math:`(x_1)`. Data type must be int32.
|
||||
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is :math:`(x_1)`, the value should be >= 0.
|
||||
Data type must be int32.
|
||||
- **num_segments** (int) - The value spcifies the number of distinct `segment_ids`,
|
||||
should be greater than 0.
|
||||
|
||||
|
|
|
@ -3760,12 +3760,12 @@ class ApplyAdagradV2(PrimitiveWithInfer):
|
|||
update_slots (bool): If `True`, `accum` will be updated. Default: True.
|
||||
|
||||
Inputs:
|
||||
- **var** (Parameter) - Variable to be updated. With float32 or float16 data type.
|
||||
- **var** (Parameter) - Variable to be updated. With float32 data type.
|
||||
- **accum** (Parameter) - Accum to be updated. The shape and dtype should be the same as `var`.
|
||||
With float32 or float16 data type.
|
||||
- **lr** (Union[Number, Tensor]) - The learning rate value, should be scalar. With float32 or float16 data type.
|
||||
With float32 data type.
|
||||
- **lr** (Union[Number, Tensor]) - The learning rate value, should be scalar. With float32 data type.
|
||||
- **grad** (Tensor) - A tensor for gradient. The shape and dtype should be the same as `var`.
|
||||
With float32 or float16 data type.
|
||||
With float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tuple of 2 Tensor, the updated parameters.
|
||||
|
@ -3817,9 +3817,8 @@ class ApplyAdagradV2(PrimitiveWithInfer):
|
|||
|
||||
def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, grad_dtype):
|
||||
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
|
||||
valid_types = [mstype.float16, mstype.float32]
|
||||
validator.check_tensor_type_same(args, valid_types, self.name)
|
||||
validator.check_scalar_or_tensor_type_same({'lr': lr_dtype}, valid_types, self.name)
|
||||
validator.check_tensor_type_same(args, [mstype.float32], self.name)
|
||||
validator.check_scalar_or_tensor_type_same({'lr': lr_dtype}, [mstype.float32], self.name)
|
||||
return var_dtype, accum_dtype
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue