forked from mindspore-Ecosystem/mindspore
!1936 resnet101 modify to model_zoo
Merge pull request !1936 from meixiaowei/master
This commit is contained in:
commit
f6be677e84
|
@ -0,0 +1,146 @@
|
|||
# ResNet101 Example
|
||||
|
||||
## Description
|
||||
|
||||
This is an example of training ResNet101 with ImageNet dataset in MindSpore.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
|
||||
- Download the dataset ImageNet2012.
|
||||
|
||||
> Unzip the ImageNet2012 dataset to any path you want, the folder should include train and eval dataset as follows:
|
||||
|
||||
```
|
||||
.
|
||||
└─dataset
|
||||
├─ilsvrc
|
||||
│
|
||||
└─validation_preprocess
|
||||
```
|
||||
|
||||
## Structure
|
||||
|
||||
```shell
|
||||
.
|
||||
└─resnet101
|
||||
├─README.md
|
||||
├─scripts
|
||||
├─run_standalone_train.sh # launch standalone training(1p)
|
||||
├─run_distribute_train.sh # launch distributed training(8p)
|
||||
└─run_eval.sh # launch evaluating
|
||||
├─src
|
||||
├─config.py # parameter configuration
|
||||
├─crossentropy.py # CrossEntropy loss function
|
||||
├─dataset.py # data preprocessin
|
||||
├─lr_generator.py # generate learning rate
|
||||
├─eval.py # eval net
|
||||
└─train.py # train net
|
||||
```
|
||||
|
||||
## Parameter configuration
|
||||
|
||||
Parameters for both training and evaluating can be set in config.py.
|
||||
|
||||
```
|
||||
"class_num": 1001, # dataset class number
|
||||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum optimizer
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 120, # epoch sizes for training
|
||||
"pretrain_epoch_size": 0, # epoch size of pretrain checkpoint
|
||||
"buffer_size": 1000, # number of queue size in data preprocessing
|
||||
"image_height": 224, # image height
|
||||
"image_width": 224, # image width
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch
|
||||
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
||||
"save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
|
||||
"warmup_epochs": 0, # number of warmup epoch
|
||||
"lr_decay_mode": "cosine" # decay mode for generating learning rate
|
||||
"label_smooth": 1, # label_smooth
|
||||
"label_smooth_factor": 0.1, # label_smooth_factor
|
||||
"lr": 0.1 # base learning rate
|
||||
```
|
||||
|
||||
## Running the example
|
||||
|
||||
### Train
|
||||
|
||||
#### Usage
|
||||
|
||||
```
|
||||
# distributed training
|
||||
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)
|
||||
|
||||
# standalone training
|
||||
sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)
|
||||
```
|
||||
|
||||
#### Launch
|
||||
|
||||
```bash
|
||||
# distributed training example(8p)
|
||||
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
|
||||
|
||||
If you want to load pretrained ckpt file,
|
||||
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt
|
||||
|
||||
# standalone training example(1p)
|
||||
sh run_standalone_train.sh dataset/ilsvrc
|
||||
|
||||
If you want to load pretrained ckpt file,
|
||||
sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt
|
||||
```
|
||||
|
||||
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||
|
||||
#### Result
|
||||
|
||||
Training result will be stored in the scripts path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log.
|
||||
|
||||
|
||||
```
|
||||
# distribute training result(8p)
|
||||
epoch: 1 step: 5004, loss is 4.805483
|
||||
epoch: 2 step: 5004, loss is 3.2121816
|
||||
epoch: 3 step: 5004, loss is 3.429647
|
||||
epoch: 4 step: 5004, loss is 3.3667371
|
||||
epoch: 5 step: 5004, loss is 3.1718972
|
||||
...
|
||||
epoch: 67 step: 5004, loss is 2.2768745
|
||||
epoch: 68 step: 5004, loss is 1.7223864
|
||||
epoch: 69 step: 5004, loss is 2.0665488
|
||||
epoch: 70 step: 5004, loss is 1.8717369
|
||||
...
|
||||
```
|
||||
|
||||
### Infer
|
||||
|
||||
#### Usage
|
||||
|
||||
```
|
||||
# infer
|
||||
sh run_eval.sh [VALIDATION_DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
#### Launch
|
||||
|
||||
```bash
|
||||
# infer with checkpoint
|
||||
sh run_eval.sh dataset/validation_preprocess/ train_parallel0/resnet-120_5004.ckpt
|
||||
|
||||
```
|
||||
|
||||
> checkpoint can be produced in training process.
|
||||
|
||||
|
||||
#### Result
|
||||
|
||||
Inference result will be stored in the scripts path, whose folder name is "eval". Under this, you can find result like the followings in log.
|
||||
|
||||
```
|
||||
result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt
|
||||
```
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
eval.
|
||||
"""
|
||||
import os
|
||||
import argparse
|
||||
import random
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore.model_zoo.resnet import resnet101
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataset.engine as de
|
||||
from mindspore.communication.management import init
|
||||
from src.dataset import create_dataset
|
||||
from src.config import config
|
||||
from src.crossentropy import CrossEntropy
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||
parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.')
|
||||
parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
|
||||
|
||||
if __name__ == '__main__':
|
||||
if not args_opt.do_eval and args_opt.run_distribute:
|
||||
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True, parameter_broadcast=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
|
||||
init()
|
||||
|
||||
epoch_size = config.epoch_size
|
||||
net = resnet101(class_num=config.class_num)
|
||||
|
||||
if not config.label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
|
||||
if args_opt.do_eval:
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
if args_opt.checkpoint_path:
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||
res = model.eval(dataset)
|
||||
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
|
@ -0,0 +1,87 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ] && [ $# != 3 ]
|
||||
then
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
PATH3=$(get_real_path $3)
|
||||
echo $PATH3
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
echo "error: MINDSPORE_HCCL_CONFIG_PATH=$PATH1 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH2 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH2 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 3 ] && [ ! -f $PATH3 ]
|
||||
then
|
||||
echo "error: PRETRAINED_PATH=$PATH3 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$PATH1
|
||||
export RANK_TABLE_FILE=$PATH1
|
||||
|
||||
for((i=0; i<${DEVICE_NUM}; i++))
|
||||
do
|
||||
export DEVICE_ID=$i
|
||||
export RANK_ID=$i
|
||||
rm -rf ./train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp ../*.py ./train_parallel$i
|
||||
cp *.sh ./train_parallel$i
|
||||
cp -r ../src ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log &
|
||||
fi
|
||||
|
||||
cd ..
|
||||
done
|
|
@ -0,0 +1,65 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ]
|
||||
then
|
||||
echo "Usage: sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=0
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
export RANK_ID=0
|
||||
|
||||
if [ -d "eval" ];
|
||||
then
|
||||
rm -rf ./eval
|
||||
fi
|
||||
mkdir ./eval
|
||||
cp ../*.py ./eval
|
||||
cp *.sh ./eval
|
||||
cp -r ../src ./eval
|
||||
cd ./eval || exit
|
||||
env > env.log
|
||||
echo "start infering for device $DEVICE_ID"
|
||||
python eval.py --do_eval=True --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log &
|
||||
cd ..
|
|
@ -0,0 +1,76 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 1 ] && [ $# != 2 ]
|
||||
then
|
||||
echo "Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
PATH1=$(get_real_path $1)
|
||||
echo $PATH1
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
PATH2=$(get_real_path $2)
|
||||
echo $PATH2
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 2 ] && [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: PRETRAINED_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=0
|
||||
export RANK_ID=0
|
||||
export RANK_SIZE=1
|
||||
|
||||
if [ -d "train" ];
|
||||
then
|
||||
rm -rf ./train
|
||||
fi
|
||||
mkdir ./train
|
||||
cp ../*.py ./train
|
||||
cp *.sh ./train
|
||||
cp -r ../src ./train
|
||||
cd ./train || exit
|
||||
echo "start training for device $DEVICE_ID"
|
||||
env > env.log
|
||||
if [ $# == 1 ]
|
||||
then
|
||||
python train.py --do_train=True --dataset_path=$PATH1 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
python train.py --do_train=True --dataset_path=$PATH1 --pre_trained=$PATH2 &> log &
|
||||
fi
|
||||
cd ..
|
|
@ -0,0 +1,40 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
config = ed({
|
||||
"class_num": 1001,
|
||||
"batch_size": 32,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 120,
|
||||
"pretrain_epoch_size": 0,
|
||||
"buffer_size": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 5,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 0,
|
||||
"lr_decay_mode": "cosine",
|
||||
"label_smooth": 1,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr": 0.1
|
||||
})
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
def __init__(self, smooth_factor=0., num_classes=1001):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes -1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean(False)
|
||||
def construct(self, logit, label):
|
||||
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, one_hot_label)
|
||||
loss = self.mean(loss, 0)
|
||||
return loss
|
|
@ -0,0 +1,89 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
create train or eval dataset.
|
||||
"""
|
||||
import os
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
from src.config import config
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||
"""
|
||||
create a train or evaluate dataset
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
device_num = int(os.getenv("RANK_SIZE"))
|
||||
rank_id = int(os.getenv("RANK_ID"))
|
||||
|
||||
if device_num == 1:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
resize_height = 224
|
||||
rescale = 1.0 / 255.0
|
||||
shift = 0.0
|
||||
|
||||
# define map operations
|
||||
decode_op = C.Decode()
|
||||
|
||||
random_resize_crop_op = C.RandomResizedCrop(resize_height, (0.08, 1.0), (0.75, 1.33), max_attempts=100)
|
||||
horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1))
|
||||
resize_op_256 = C.Resize((256, 256))
|
||||
center_crop = C.CenterCrop(224)
|
||||
rescale_op = C.Rescale(rescale, shift)
|
||||
normalize_op = C.Normalize((0.475, 0.451, 0.392), (0.275, 0.267, 0.278))
|
||||
changeswap_op = C.HWC2CHW()
|
||||
|
||||
trans = []
|
||||
if do_train:
|
||||
trans = [decode_op,
|
||||
random_resize_crop_op,
|
||||
horizontal_flip_op,
|
||||
rescale_op,
|
||||
normalize_op,
|
||||
changeswap_op]
|
||||
|
||||
else:
|
||||
trans = [decode_op,
|
||||
resize_op_256,
|
||||
center_crop,
|
||||
rescale_op,
|
||||
normalize_op,
|
||||
changeswap_op]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
|
||||
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
|
||||
|
||||
# apply shuffle operations
|
||||
ds = ds.shuffle(buffer_size=config.buffer_size)
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
# apply dataset repeat operation
|
||||
ds = ds.repeat(repeat_num)
|
||||
|
||||
return ds
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
||||
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
|
||||
lr = float(init_lr) + lr_inc * current_step
|
||||
return lr
|
||||
|
||||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch=120, global_step=0):
|
||||
"""
|
||||
generate learning rate array with cosine
|
||||
|
||||
Args:
|
||||
lr(float): base learning rate
|
||||
steps_per_epoch(int): steps size of one epoch
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
max_epoch(int): total epochs of training
|
||||
global_step(int): the current start index of lr array
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
base_lr = lr
|
||||
warmup_init_lr = 0
|
||||
total_steps = int(max_epoch * steps_per_epoch)
|
||||
warmup_steps = int(warmup_epochs * steps_per_epoch)
|
||||
decay_steps = total_steps - warmup_steps
|
||||
|
||||
lr_each_step = []
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
|
||||
else:
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
||||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = base_lr * decayed
|
||||
lr_each_step.append(lr)
|
||||
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[global_step:]
|
||||
return learning_rate
|
|
@ -0,0 +1,102 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train_imagenet."""
|
||||
import os
|
||||
import argparse
|
||||
import random
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.model_zoo.resnet import resnet101
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataset.engine as de
|
||||
from mindspore.communication.management import init
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.initializer as weight_init
|
||||
from src.dataset import create_dataset
|
||||
from src.lr_generator import warmup_cosine_annealing_lr
|
||||
from src.config import config
|
||||
from src.crossentropy import CrossEntropy
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
||||
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id,
|
||||
enable_auto_mixed_precision=True)
|
||||
|
||||
if __name__ == '__main__':
|
||||
if not args_opt.do_eval and args_opt.run_distribute:
|
||||
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True, parameter_broadcast=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
|
||||
init()
|
||||
|
||||
epoch_size = config.epoch_size
|
||||
net = resnet101(class_num=config.class_num)
|
||||
# weight init
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
if not config.label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
if args_opt.do_train:
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
|
||||
repeat_num=epoch_size, batch_size=config.batch_size)
|
||||
step_size = dataset.get_dataset_size()
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# learning rate strategy with cosine
|
||||
lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, 120,
|
||||
config.pretrain_epoch_size*step_size))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||
config.weight_decay, config.loss_scale)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False,
|
||||
loss_scale_manager=loss_scale, metrics={'acc'})
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
loss_cb = LossMonitor()
|
||||
cb = [time_cb, loss_cb]
|
||||
if config.save_checkpoint:
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
|
||||
cb += [ckpt_cb]
|
||||
model.train(epoch_size, dataset, callbacks=cb)
|
Loading…
Reference in New Issue