forked from mindspore-Ecosystem/mindspore
Add SquareDifference kernel for GPU
添加测试用例 添加测试用例 添加测试用例 添加测试用例 清除告警 添加测试用例 添加测试用例 清除告警
This commit is contained in:
parent
3ba3ffedd4
commit
f4ae9cdbc4
|
@ -105,6 +105,5 @@ bool RandomCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -48,6 +48,5 @@ bool SelectCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -192,6 +192,14 @@ struct AbsGradFunc<half2> {
|
|||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct SquaredDifferenceFunc {
|
||||
__device__ __forceinline__ T operator()(const T &lhs, const T &rhs) {
|
||||
T diff = lhs - rhs;
|
||||
return diff * diff;
|
||||
}
|
||||
};
|
||||
|
||||
// Element-wise Comparation
|
||||
template <typename T, typename Func>
|
||||
__global__ void ElewiseCmpKernel(const int nums, const T *x0, const T *x1, bool *y) {
|
||||
|
@ -260,6 +268,8 @@ void ElewiseArithKernel(const int &nums, enum BroadcastOpType op, const T *x0, c
|
|||
return ElewiseArithKernel<T, DivFunc<T>><<<(nums + 255) / 256, 256, 0, stream>>>(nums, x0, x1, y);
|
||||
case BROADCAST_TYPE_DIVNONAN:
|
||||
return ElewiseArithKernel<T, DivNoNanFunc<T>><<<(nums + 255) / 256, 256, 0, stream>>>(nums, x0, x1, y);
|
||||
case BROADCAST_TYPE_SQUARED_DIFFERENCE:
|
||||
return ElewiseArithKernel<T, SquaredDifferenceFunc<T>><<<(nums + 255) / 256, 256, 0, stream>>>(nums, x0, x1, y);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -481,6 +491,11 @@ void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t
|
|||
x0_dims[0], x0_dims[1], x0_dims[2], x0_dims[3], x0_dims[4], x0_dims[5], x0_dims[6], x1_dims[0], x1_dims[1],
|
||||
x1_dims[2], x1_dims[3], x1_dims[4], x1_dims[5], x1_dims[6], y_dims[0], y_dims[1], y_dims[2], y_dims[3],
|
||||
y_dims[4], y_dims[5], y_dims[6], x0, x1, y);
|
||||
case BROADCAST_TYPE_SQUARED_DIFFERENCE:
|
||||
return BroadcastArithKernel<T, SquaredDifferenceFunc<T>><<<(size + 255) / 256, 256, 0, stream>>>(
|
||||
x0_dims[0], x0_dims[1], x0_dims[2], x0_dims[3], x0_dims[4], x0_dims[5], x0_dims[6], x1_dims[0], x1_dims[1],
|
||||
x1_dims[2], x1_dims[3], x1_dims[4], x1_dims[5], x1_dims[6], y_dims[0], y_dims[1], y_dims[2], y_dims[3],
|
||||
y_dims[4], y_dims[5], y_dims[6], x0, x1, y);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -37,6 +37,7 @@ enum BroadcastOpType {
|
|||
BROADCAST_TYPE_DIV = 11,
|
||||
BROADCAST_TYPE_DIVNONAN = 12,
|
||||
BROADCAST_TYPE_EQUAL = 13,
|
||||
BROADCAST_TYPE_SQUARED_DIFFERENCE = 14,
|
||||
BROADCAST_TYPE_INVALID = 0xffffffff,
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/math/squared_difference_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
// fp32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
SquaredDifferenceOpGpuKernel, float)
|
||||
|
||||
// fp16
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
SquaredDifferenceOpGpuKernel, half)
|
||||
|
||||
// int32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
SquaredDifferenceOpGpuKernel, int)
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,144 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARED_DIFFERENCE_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARED_DIFFERENCE_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/broadcast_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/kernel_constants.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
constexpr int MAX_DIMS = 7;
|
||||
template <typename T>
|
||||
class SquaredDifferenceOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
SquaredDifferenceOpGpuKernel() { ResetResource(); }
|
||||
~SquaredDifferenceOpGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *lhs = GetDeviceAddress<T>(inputs, 0);
|
||||
T *rhs = GetDeviceAddress<T>(inputs, 1);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
if (need_broadcast_) {
|
||||
BroadcastArith(lhs_shape_, rhs_shape_, output_shape_, op_type_, lhs, rhs, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
} else {
|
||||
ElewiseArith(output_num_, op_type_, lhs, rhs, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape1 = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
auto input_shape2 = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1);
|
||||
auto output_shape = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
need_broadcast_ = IsBroadcast(input_shape1, input_shape2);
|
||||
if (need_broadcast_ && output_shape.size() > MAX_DIMS) {
|
||||
MS_LOG(EXCEPTION) << "Broadcast operation not support dim greater than 7";
|
||||
}
|
||||
|
||||
lhs_shape_.resize(MAX_DIMS, 1);
|
||||
rhs_shape_.resize(MAX_DIMS, 1);
|
||||
output_shape_.resize(MAX_DIMS, 1);
|
||||
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||
if (need_broadcast_) {
|
||||
output_shape_[i] = output_shape[i];
|
||||
}
|
||||
output_num_ *= output_shape[i];
|
||||
}
|
||||
int lhs_offset = output_shape.size() - input_shape1.size();
|
||||
for (size_t j = 0; j < input_shape1.size(); j++) {
|
||||
if (need_broadcast_) {
|
||||
lhs_shape_[j + lhs_offset] = input_shape1[j];
|
||||
}
|
||||
input1_num_ *= input_shape1[j];
|
||||
}
|
||||
int rhs_offset = output_shape.size() - input_shape2.size();
|
||||
for (size_t k = 0; k < input_shape2.size(); k++) {
|
||||
if (need_broadcast_) {
|
||||
rhs_shape_[k + rhs_offset] = input_shape2[k];
|
||||
}
|
||||
input2_num_ *= input_shape2[k];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
op_type_ = BROADCAST_TYPE_SQUARED_DIFFERENCE;
|
||||
need_broadcast_ = false;
|
||||
input1_num_ = 1;
|
||||
input2_num_ = 1;
|
||||
output_num_ = 1;
|
||||
lhs_shape_.clear();
|
||||
rhs_shape_.clear();
|
||||
output_shape_.clear();
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override { return; }
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input1_num_ * sizeof(T));
|
||||
input_size_list_.push_back(input2_num_ * sizeof(T));
|
||||
output_size_list_.push_back(output_num_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
bool IsBroadcast(const std::vector<size_t> &lhs, const std::vector<size_t> &rhs) {
|
||||
if (lhs.size() != rhs.size()) {
|
||||
return true;
|
||||
}
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
if (lhs[i] != rhs[i]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
BroadcastOpType op_type_;
|
||||
bool need_broadcast_;
|
||||
bool is_comp_op_;
|
||||
size_t input1_num_;
|
||||
size_t input2_num_;
|
||||
size_t output_num_;
|
||||
std::vector<size_t> lhs_shape_;
|
||||
std::vector<size_t> rhs_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
}; // namespace kernel
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARED_DIFFERENCE_GPU_KERNEL_H_
|
|
@ -0,0 +1,314 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class SquaredDifference(nn.Cell):
|
||||
def __init__(self):
|
||||
super(SquaredDifference, self).__init__()
|
||||
self.squaredDiff = P.SquaredDifference()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.squaredDiff(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast_f16():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.uniform(10, 20, (3, 4, 5, 2)).astype(np.float16)
|
||||
input_y = np.random.uniform(40, 50, (3, 4, 5, 2)).astype(np.float16)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast_f32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(3, 4, 5, 2).astype(np.float32)
|
||||
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast_int32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(3, 4, 5, 2).astype(np.int32)
|
||||
input_y = np.random.rand(3, 4, 5, 2).astype(np.int32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_int32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.int32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_f32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 4, 1, 2).astype(np.float32)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_f16():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 4, 1, 2).astype(np.float16)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.float16)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_bool():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 4, 1, 2).astype(np.bool)
|
||||
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||||
double_check = np.abs(output-expect)/expect
|
||||
assert np.all(double_check < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast_bool():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(3, 4, 5, 2).astype(np.bool)
|
||||
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||||
double_check = np.abs(output-expect)/expect
|
||||
assert np.all(double_check < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_int32_f16():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
|
||||
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float16)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
|
||||
double_check = np.abs(output-expect)/expect
|
||||
assert np.all(double_check < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_int32_f32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
|
||||
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||||
double_check = np.abs(output-expect)/expect
|
||||
assert np.all(double_check < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast_int32_f16():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32)
|
||||
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float16)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
|
||||
double_check = np.abs(output-expect)/expect
|
||||
assert np.all(double_check < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast_int32_f32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32)
|
||||
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||||
double_check = np.abs(output-expect)/expect
|
||||
assert np.all(double_check < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_f32_scalar_tensor():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(2).astype(np.float32)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_f32_tensor_tensor():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 2).astype(np.float32)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
assert np.all(output == expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_f32_tensor_tensor_dim_over_7():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(1, 2).astype(np.float32)
|
||||
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2, 1).astype(np.float32)
|
||||
try:
|
||||
net(Tensor(input_x), Tensor(input_y))
|
||||
except RuntimeError:
|
||||
assert True
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_f32_tensor_tensor_cannot_brocast():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.rand(5, 3).astype(np.float32)
|
||||
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2).astype(np.float32)
|
||||
try:
|
||||
net(Tensor(input_x), Tensor(input_y))
|
||||
except ValueError:
|
||||
assert True
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_int_f32_precision():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.randint(20, 30, (1, 2)).astype(np.int32)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||||
diff = input_x-input_y
|
||||
expect = diff*diff
|
||||
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
|
||||
double_thousand = np.abs(output-expect)/expect
|
||||
assert np.all(double_thousand < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast_type_error():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
np.random.seed(42)
|
||||
net = SquaredDifference()
|
||||
input_x = np.random.randint(20, 30, (1, 2)).astype(np.bool)
|
||||
input_y = np.random.rand(3, 1, 5, 1).astype(np.bool)
|
||||
try:
|
||||
net(Tensor(input_x), Tensor(input_y))
|
||||
except TypeError:
|
||||
assert True
|
Loading…
Reference in New Issue