forked from mindspore-Ecosystem/mindspore
support asin and acos with dtype float on gpu
This commit is contained in:
parent
92b1e7e2ba
commit
f49bd92b88
|
@ -16,35 +16,35 @@
|
|||
|
||||
#include "unary_op_impl.cuh"
|
||||
template <typename T>
|
||||
__global__ void ExponentialKernel(T *input, T *output, size_t count) {
|
||||
__global__ void ExponentialKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = exp(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void ExponentialKernel(half *input, half *output, size_t count) {
|
||||
__global__ void ExponentialKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hexp(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void LogarithmKernel(T *input, T *output, size_t count) {
|
||||
__global__ void LogarithmKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = logf(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void LogarithmKernel(half *input, half *output, size_t count) {
|
||||
__global__ void LogarithmKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hlog(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void NegativeKernel(T *input, T *output, size_t count) {
|
||||
__global__ void NegativeKernel(const T *input, T *output, const size_t count) {
|
||||
T neg_one = -1;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = neg_one * input[i];
|
||||
|
@ -52,7 +52,7 @@ __global__ void NegativeKernel(T *input, T *output, size_t count) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ReciprocalKernel(T *input, T *output, size_t count) {
|
||||
__global__ void ReciprocalKernel(const T *input, T *output, const size_t count) {
|
||||
T one = 1.0;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = one / input[i];
|
||||
|
@ -60,70 +60,84 @@ __global__ void ReciprocalKernel(T *input, T *output, size_t count) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void SquareKernel(T *input, T *output, size_t count) {
|
||||
__global__ void SquareKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = input[i] * input[i];
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void SqrtKernel(T *input, T *output, size_t count) {
|
||||
__global__ void SqrtKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = sqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void SqrtKernel(half *input, half *output, size_t count) {
|
||||
__global__ void SqrtKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hsqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void RsqrtKernel(T *input, T *output, size_t count) {
|
||||
__global__ void RsqrtKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = rsqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void RsqrtKernel(half *input, half *output, size_t count) {
|
||||
__global__ void RsqrtKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hrsqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void SinKernel(T *input, T *output, size_t count) {
|
||||
__global__ void SinKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = sin(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void SinKernel(half *input, half *output, size_t count) {
|
||||
__global__ void SinKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hsin(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void CosKernel(T *input, T *output, size_t count) {
|
||||
__global__ void AsinKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = asinf(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void CosKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = cos(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void CosKernel(half *input, half *output, size_t count) {
|
||||
__global__ void CosKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hcos(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ZeroslikeKernel(T *output, size_t count) {
|
||||
__global__ void ACosKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = acosf(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ZeroslikeKernel(T *output, const size_t count) {
|
||||
T zero = 0.0;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = zero;
|
||||
|
@ -131,14 +145,14 @@ __global__ void ZeroslikeKernel(T *output, size_t count) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void AbsKernel(T *input, T *output, size_t count) {
|
||||
__global__ void AbsKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = abs(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void AbsKernel(half *input, half *output, size_t count) {
|
||||
__global__ void AbsKernel(const half *input, half *output, const size_t count) {
|
||||
half zero = 0.0;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = input[i] < zero ? -input[i] : input[i];
|
||||
|
@ -146,106 +160,120 @@ __global__ void AbsKernel(half *input, half *output, size_t count) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void FloorKernel(T *input, T *output, size_t count) {
|
||||
__global__ void FloorKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = floor(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void FloorKernel(half *input, half *output, size_t count) {
|
||||
__global__ void FloorKernel(const half *input, half *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hfloor(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Exponential(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Exponential(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ExponentialKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Logarithm(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Logarithm(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
LogarithmKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Negative(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Negative(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
NegativeKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Reciprocal(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Reciprocal(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ReciprocalKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Square(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Square(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
SquareKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Pow(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Pow(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
PowKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Sqrt(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
SqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Sin(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
SinKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Cos(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
CosKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Asin(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
AsinKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void ACos(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ACosKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Rsqrt(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
RsqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Zeroslike(T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ZeroslikeKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Abs(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Abs(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
AbsKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Floor(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
void Floor(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
FloorKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
|
||||
template void Exponential<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sin<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Cos<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<float>(float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Abs<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Floor<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Exponential<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sin<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Cos<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<half>(half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Abs<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Floor<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Exponential<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Sin<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Cos<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Asin<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void ACos<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<float>(float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Abs<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Floor<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Exponential<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Sin<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Cos<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Asin<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void ACos<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<half>(half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Abs<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Floor<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -19,28 +19,32 @@
|
|||
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
template <typename T>
|
||||
void Exponential(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Exponential(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Logarithm(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Logarithm(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Negative(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Negative(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Reciprocal(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Reciprocal(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Square(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Square(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Sqrt(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Rsqrt(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Sin(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Cos(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Asin(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Abs(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void ACos(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Floor(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
void Zeroslike(T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Abs(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Floor(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOPIMPL_H_
|
||||
|
|
|
@ -54,10 +54,14 @@ MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutp
|
|||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Asin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(ACos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
|
|
|
@ -38,6 +38,8 @@ enum UnaryOptype {
|
|||
UNARY_OP_RSQRT,
|
||||
UNARY_OP_SIN,
|
||||
UNARY_OP_COS,
|
||||
UNARY_OP_ASIN,
|
||||
UNARY_OP_ACOS,
|
||||
UNARY_OP_ABS,
|
||||
UNARY_OP_FLOOR,
|
||||
UNARY_OP_INVALID_TYPE = 255
|
||||
|
@ -52,6 +54,8 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY
|
|||
{"Rsqrt", UNARY_OP_RSQRT},
|
||||
{"Sin", UNARY_OP_SIN},
|
||||
{"Cos", UNARY_OP_COS},
|
||||
{"Asin", UNARY_OP_ASIN},
|
||||
{"ACos", UNARY_OP_ACOS},
|
||||
{"Abs", UNARY_OP_ABS},
|
||||
{"Floor", UNARY_OP_FLOOR}};
|
||||
template <typename T>
|
||||
|
@ -112,6 +116,14 @@ class UnaryOpGpuKernel : public GpuKernel {
|
|||
Cos(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ASIN: {
|
||||
Asin(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ACOS: {
|
||||
ACos(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ZEROSLIKE: {
|
||||
Zeroslike(output_addr, output_size_ / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acos_fp32():
|
||||
x_np = np.array([0.74, 0.04, 0.30, 0.56]).astype(np.float32)
|
||||
output_ms = P.ACos()(Tensor(x_np))
|
||||
output_np = np.arccos(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asin_fp32():
|
||||
x_np = np.array([0.74, 0.04, 0.30, 0.56]).astype(np.float32)
|
||||
output_ms = P.Asin()(Tensor(x_np))
|
||||
output_np = np.arcsin(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
Loading…
Reference in New Issue