forked from mindspore-Ecosystem/mindspore
!26673 modify Dataset_rst and zip_rst master
Merge pull request !26673 from xumengjuan1/master
This commit is contained in:
commit
f2f75a1403
|
@ -1,35 +1,37 @@
|
|||
get_dataset_size()
|
||||
.. py:method:: get_dataset_size()
|
||||
|
||||
返回一个epoch中的batch数。
|
||||
|
||||
返回:
|
||||
int,batch的数目。
|
||||
**返回:**
|
||||
|
||||
int,batch的数目。
|
||||
|
||||
get_repeat_count()
|
||||
.. py:method:: get_repeat_count()
|
||||
|
||||
获取RepeatDataset中的repeat次数(默认为1)。
|
||||
获取 `RepeatDataset` 中的repeat次数(默认为1)。
|
||||
|
||||
返回:
|
||||
int,repeat次数。
|
||||
**返回:**
|
||||
|
||||
int,repeat次数。
|
||||
|
||||
input_indexs
|
||||
.. py:method:: input_indexs
|
||||
:property:
|
||||
|
||||
获取input index信息。
|
||||
|
||||
返回:
|
||||
input index信息的元组。
|
||||
**返回:**
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> # 设置input_indexs
|
||||
>>> dataset.input_indexs = 10
|
||||
>>> print(dataset.input_indexs)
|
||||
10
|
||||
input index信息的元组。
|
||||
|
||||
**样例:**
|
||||
|
||||
map(operations, input_columns=None, output_columns=None, column_order=None, num_parallel_workers=None, python_multiprocessing=False, cache=None, callbacks=None)
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> # 设置input_indexs
|
||||
>>> dataset.input_indexs = 10
|
||||
>>> print(dataset.input_indexs)
|
||||
10
|
||||
|
||||
.. py:method:: map(operations, input_columns=None, output_columns=None, column_order=None, num_parallel_workers=None, python_multiprocessing=False, cache=None, callbacks=None)
|
||||
|
||||
将operations列表中的每个operation作用于数据集。
|
||||
|
||||
|
@ -37,225 +39,224 @@ map(operations, input_columns=None, output_columns=None, column_order=None, num_
|
|||
将首先作用operation[0],然后operation[1],operation[2],以此类推。
|
||||
|
||||
每个operation将数据集中的一列或多列作为输入,并将输出零列或多列。
|
||||
第一个operation将input_columns中指定的列作为输入。
|
||||
第一个operation将 `input_columns` 中指定的列作为输入。
|
||||
如果operations列表中存在多个operation,则上一个operation的输出列将用作下一个operation的输入列。
|
||||
|
||||
最后一个operation输出列的列名由output_columns指定。
|
||||
最后一个operation输出列的列名由 `output_columns` 指定。
|
||||
|
||||
只有在 `column_order` 中指定的列才会传播到子节点,并且列的顺序将与 `column_order` 中指定的顺序相同。
|
||||
|
||||
只有在column_order中指定的列才会传播到子节点,并且列的顺序将与column_order中指定的顺序相同。
|
||||
**参数:**
|
||||
|
||||
- **operations** (Union[list[TensorOp], list[functions]]) - 要作用于数据集的operations列表。将按operations列表中显示的顺序作用在数据集。
|
||||
- **input_columns** (Union[str, list[str]], optional) - 第一个operation输入的列名列表。此列表的大小必须与第一个operation预期的输入列数相匹配。(默认为None,从第一列开始,无论多少列,都将传递给第一个operation)。
|
||||
- **output_columns** (Union[str, list[str]], optional) - 最后一个operation输出的列名列表。如果 `input_columns` 长度不等于 `output_columns` 长度,则此参数必选。此列表的大小必须与最后一个operation的输出列数相匹配(默认为None,输出列将与输入列具有相同的名称,例如,替换一些列)。
|
||||
- **column_order** (list[str], optional) - 指定整个数据集中所需的所有列的列表。当 `input_columns` 长度不等于 `output_columns` 长度时,则此参数必选。注意:这里的列表不仅仅是参数 `input_columns` 和 `output_columns` 中指定的列。
|
||||
- **num_parallel_workers** (int, optional) - 用于并行处理数据集的线程数(默认为None,将使用配置文件中的值)。
|
||||
- **python_multiprocessing** (bool, optional) - 将Python operations委托给多个工作进程进行并行处理。如果Python operations计算量很大,此选项可能会很有用(默认为False)。
|
||||
- **cache** (DatasetCache, optional) - 使用Tensor缓存服务加快数据集处理速度(默认为None,即不使用缓存)。
|
||||
- **callbacks** (DSCallback, list[DSCallback], optional) - 要调用的Dataset回调函数列表(默认为None)。
|
||||
|
||||
参数:
|
||||
operations (Union[list[TensorOp], list[functions]]):要作用于数据集的operations列表。
|
||||
将按operations列表中显示的顺序作用在数据集。
|
||||
input_columns (Union[str, list[str]], optional):第一个operation输入的列名列表。
|
||||
此列表的大小必须与第一个operation预期的输入列数相匹配。(默认为None,从第一列开始,无论多少列,都将传递给第一个operation)。
|
||||
output_columns (Union[str, list[str]], optional):最后一个operation输出的列名列表。
|
||||
如果input_columns长度不等于 output_columns长度,则此参数必选。
|
||||
此列表的大小必须与最后一个operation的输出列数相匹配(默认为None,输出列将与输入列具有相同的名称,例如,替换一些列)。
|
||||
column_order (list[str], optional):指定整个数据集中所需的所有列的列表。
|
||||
当input_columns长度不等于 output_columns长度时,则此参数必选。注意:这里的列表不仅仅是参数input_columns和output_columns中指定的列。
|
||||
**返回:**
|
||||
|
||||
num_parallel_workers (int, optional):用于并行处理数据集的线程数(默认为None,将使用配置文件中的值)。
|
||||
python_multiprocessing (bool, optional):将Python operations委托给多个工作进程进行并行处理。如果Python operations计算量很大,此选项可能会很有用(默认为False)。
|
||||
cache (DatasetCache, optional):使用Tensor缓存服务加快数据集处理速度
|
||||
(默认为None,即不使用缓存)。
|
||||
callbacks (DSCallback, list[DSCallback], optional):要调用的Dataset回调函数列表(默认为None)。
|
||||
MapDataset,map操作后的数据集。
|
||||
|
||||
**样例:**
|
||||
|
||||
返回:
|
||||
MapDataset,map操作后的数据集。
|
||||
>>> # dataset是Dataset的一个实例,它有2列,"image"和"label"。
|
||||
>>>
|
||||
>>> # 定义两个operation,每个operation接受1列输入,输出1列。
|
||||
>>> decode_op = c_vision.Decode(rgb=True)
|
||||
>>> random_jitter_op = c_vision.RandomColorAdjust(brightness=(0.8, 0.8), contrast=(1, 1),
|
||||
... saturation=(1, 1), hue=(0, 0))
|
||||
>>>
|
||||
>>> # 1)简单的map示例。
|
||||
>>>
|
||||
>>> # 在列“image"上应用decode_op。此列将被
|
||||
>>> # decode_op的输出列替换。由于未指定column_order,因此两列“image"
|
||||
>>> # 和“label"将按其原始顺序传播到下一个节点。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"])
|
||||
>>>
|
||||
>>> # 解码列“image"并将其重命名为“decoded_image"。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"], output_columns=["decoded_image"])
|
||||
>>>
|
||||
>>> # 指定输出列的顺序。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"],
|
||||
... output_columns=None, column_order=["label", "image"])
|
||||
>>>
|
||||
>>> # 将列“image"重命名为“decoded_image",并指定输出列的顺序。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"],
|
||||
... output_columns=["decoded_image"], column_order=["label", "decoded_image"])
|
||||
>>>
|
||||
>>> # 将列“image"重命名为“decoded_image",并只保留此列。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"],
|
||||
... output_columns=["decoded_image"], column_order=["decoded_image"])
|
||||
>>>
|
||||
>>> # 使用用户自定义Python函数的map简单示例。列重命名和指定列顺序
|
||||
>>> # 的方式同前面的示例相同。
|
||||
>>> dataset = ds.NumpySlicesDataset(data=[[0, 1, 2]], column_names=["data"])
|
||||
>>> dataset = dataset.map(operations=[(lambda x: x + 1)], input_columns=["data"])
|
||||
>>>
|
||||
>>> # 2)多个operation的map示例。
|
||||
>>>
|
||||
>>> # 创建一个数据集,图像被解码,并随机颜色抖动。
|
||||
>>> # decode_op以列“image"作为输入,并输出一列。将
|
||||
>>> # decode_op输出的列作为输入传递给random_jitter_op。
|
||||
>>> # random_jitter_op将输出一列。列“image"将替换为
|
||||
>>> # random_jitter_op(最后一个operation)输出的列。所有其他
|
||||
>>> # 列保持不变。由于未指定column_order,因此
|
||||
>>> # 列的顺序将保持不变。
|
||||
>>> dataset = dataset.map(operations=[decode_op, random_jitter_op], input_columns=["image"])
|
||||
>>>
|
||||
>>> # 将random_jitter_op输出的列重命名为“image_mapped"。
|
||||
>>> # 指定列顺序的方式与1中的示例相同。
|
||||
>>> dataset = dataset.map(operations=[decode_op, random_jitter_op], input_columns=["image"],
|
||||
... output_columns=["image_mapped"])
|
||||
>>>
|
||||
>>> # 使用用户自定义Python函数的多个operation的map示例。列重命名和指定列顺序
|
||||
>>> # 的方式与1中的示例相同。
|
||||
>>> dataset = ds.NumpySlicesDataset(data=[[0, 1, 2]], column_names=["data"])
|
||||
>>> dataset = dataset.map(operations=[(lambda x: x * x), (lambda x: x - 1)], input_columns=["data"],
|
||||
... output_columns=["data_mapped"])
|
||||
>>>
|
||||
>>> # 3)输入列数不等于输出列数的示例。
|
||||
>>>
|
||||
>>> # operation[0] 是一个 lambda,它以 2 列作为输入并输出 3 列。
|
||||
>>> # operations[1] 是一个 lambda,它以 3 列作为输入并输出 1 列。
|
||||
>>> # operations[2] 是一个 lambda,它以 1 列作为输入并输出 4 列。
|
||||
>>> #
|
||||
>>> # 注:operation[i]的输出列数必须等于
|
||||
>>> # operation[i+1]的输入列。否则,map算子会
|
||||
>>> # 出错。
|
||||
>>> operations = [(lambda x, y: (x, x + y, x + y + 1)),
|
||||
... (lambda x, y, z: x * y * z),
|
||||
... (lambda x: (x % 2, x % 3, x % 5, x % 7))]
|
||||
>>>
|
||||
>>> # 注:由于输入列数与
|
||||
>>> # 输出列数不相同,必须指定output_columns和column_order
|
||||
>>> # 参数。否则,此map算子也会出错。
|
||||
>>>
|
||||
>>> dataset = ds.NumpySlicesDataset(data=([[0, 1, 2]], [[3, 4, 5]]), column_names=["x", "y"])
|
||||
>>>
|
||||
>>> # 按以下顺序将所有列传播到子节点:
|
||||
>>> dataset = dataset.map(operations, input_columns=["x", "y"],
|
||||
... output_columns=["mod2", "mod3", "mod5", "mod7"],
|
||||
... column_order=["mod2", "mod3", "mod5", "mod7"])
|
||||
>>>
|
||||
>>> # 按以下顺序将某些列传播到子节点:
|
||||
>>> dataset = dataset.map(operations, input_columns=["x", "y"],
|
||||
... output_columns=["mod2", "mod3", "mod5", "mod7"],
|
||||
... column_order=["mod7", "mod3", "col2"])
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset的一个实例,它有2列,"image"和"label"。
|
||||
>>>
|
||||
>>> # 定义两个operation,每个operation接受1列输入,输出1列。
|
||||
>>> decode_op = c_vision.Decode(rgb=True)
|
||||
>>> random_jitter_op = c_vision.RandomColorAdjust(brightness=(0.8, 0.8), contrast=(1, 1),
|
||||
... saturation=(1, 1), hue=(0, 0))
|
||||
>>>
|
||||
>>> # 1)简单的map示例。
|
||||
>>>
|
||||
>>> # 在列“image"上应用decode_op。此列将被
|
||||
>>> # decode_op的输出列替换。由于未指定column_order,因此两列“image"
|
||||
>>> # 和“label"将按其原始顺序传播到下一个节点。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"])
|
||||
>>>
|
||||
>>> # 解码列“image"并将其重命名为“decoded_image"。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"], output_columns=["decoded_image"])
|
||||
>>>
|
||||
>>> # 指定输出列的顺序。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"],
|
||||
... output_columns=None, column_order=["label", "image"])
|
||||
>>>
|
||||
>>> # 将列“image"重命名为“decoded_image",并指定输出列的顺序。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"],
|
||||
... output_columns=["decoded_image"], column_order=["label", "decoded_image"])
|
||||
>>>
|
||||
>>> # 将列“image"重命名为“decoded_image",并只保留此列。
|
||||
>>> dataset = dataset.map(operations=[decode_op], input_columns=["image"],
|
||||
... output_columns=["decoded_image"], column_order=["decoded_image"])
|
||||
>>>
|
||||
>>> # 使用用户自定义Python函数的map简单示例。列重命名和指定列顺序
|
||||
>>> # 的方式同前面的示例相同。
|
||||
>>> dataset = ds.NumpySlicesDataset(data=[[0, 1, 2]], column_names=["data"])
|
||||
>>> dataset = dataset.map(operations=[(lambda x: x + 1)], input_columns=["data"])
|
||||
>>>
|
||||
>>> # 2)多个operation的map示例。
|
||||
>>>
|
||||
>>> # 创建一个数据集,图像被解码,并随机颜色抖动。
|
||||
>>> # decode_op以列“image"作为输入,并输出一列。将
|
||||
>>> # decode_op输出的列作为输入传递给random_jitter_op。
|
||||
>>> # random_jitter_op将输出一列。列“image"将替换为
|
||||
>>> # random_jitter_op(最后一个operation)输出的列。所有其他
|
||||
>>> # 列保持不变。由于未指定column_order,因此
|
||||
>>> # 列的顺序将保持不变。
|
||||
>>> dataset = dataset.map(operations=[decode_op, random_jitter_op], input_columns=["image"])
|
||||
>>>
|
||||
>>> # 将random_jitter_op输出的列重命名为“image_mapped"。
|
||||
>>> # 指定列顺序的方式与1中的示例相同。
|
||||
>>> dataset = dataset.map(operations=[decode_op, random_jitter_op], input_columns=["image"],
|
||||
... output_columns=["image_mapped"])
|
||||
>>>
|
||||
>>> # 使用用户自定义Python函数的多个operation的map示例。列重命名和指定列顺序
|
||||
>>> # 的方式与1中的示例相同。
|
||||
>>> dataset = ds.NumpySlicesDataset(data=[[0, 1, 2]], column_names=["data"])
|
||||
>>> dataset = dataset.map(operations=[(lambda x: x * x), (lambda x: x - 1)], input_columns=["data"],
|
||||
... output_columns=["data_mapped"])
|
||||
>>>
|
||||
>>> # 3)输入列数不等于输出列数的示例。
|
||||
>>>
|
||||
>>> # operation[0] 是一个 lambda,它以 2 列作为输入并输出 3 列。
|
||||
>>> # operations[1] 是一个 lambda,它以 3 列作为输入并输出 1 列。
|
||||
>>> # operations[2] 是一个 lambda,它以 1 列作为输入并输出 4 列。
|
||||
>>> #
|
||||
>>> # 注:operation[i]的输出列数必须等于
|
||||
>>> # operation[i+1]的输入列。否则,map算子会
|
||||
>>> # 出错。
|
||||
>>> operations = [(lambda x, y: (x, x + y, x + y + 1)),
|
||||
... (lambda x, y, z: x * y * z),
|
||||
... (lambda x: (x % 2, x % 3, x % 5, x % 7))]
|
||||
>>>
|
||||
>>> # 注:由于输入列数与
|
||||
>>> # 输出列数不相同,必须指定output_columns和column_order
|
||||
>>> # 参数。否则,此map算子也会出错。
|
||||
>>>
|
||||
>>> dataset = ds.NumpySlicesDataset(data=([[0, 1, 2]], [[3, 4, 5]]), column_names=["x", "y"])
|
||||
>>>
|
||||
>>> # 按以下顺序将所有列传播到子节点:
|
||||
>>> dataset = dataset.map(operations, input_columns=["x", "y"],
|
||||
... output_columns=["mod2", "mod3", "mod5", "mod7"],
|
||||
... column_order=["mod2", "mod3", "mod5", "mod7"])
|
||||
>>>
|
||||
>>> # 按以下顺序将某些列传播到子节点:
|
||||
>>> dataset = dataset.map(operations, input_columns=["x", "y"],
|
||||
... output_columns=["mod2", "mod3", "mod5", "mod7"],
|
||||
... column_order=["mod7", "mod3", "col2"])
|
||||
|
||||
|
||||
num_classes()
|
||||
.. py:method:: num_classes()
|
||||
|
||||
获取数据集中的样本的class数目。
|
||||
|
||||
返回:
|
||||
int,class数目。
|
||||
**返回:**
|
||||
|
||||
int,class数目。
|
||||
|
||||
output_shapes()
|
||||
.. py:method:: output_shapes()
|
||||
|
||||
获取输出数据的shape。
|
||||
|
||||
返回:
|
||||
list,每列shape的列表。
|
||||
**返回:**
|
||||
|
||||
list,每列shape的列表。
|
||||
|
||||
output_types()
|
||||
.. py:method:: output_types()
|
||||
|
||||
获取输出数据类型。
|
||||
|
||||
返回:
|
||||
list,每列类型的列表。
|
||||
**返回:**
|
||||
|
||||
list,每列类型的列表。
|
||||
|
||||
project(columns)
|
||||
.. py:method:: project(columns)
|
||||
|
||||
在输入数据集上投影某些列。
|
||||
|
||||
从数据集中选择列,并以指定的顺序传输到流水线中。
|
||||
其他列将被丢弃。
|
||||
|
||||
参数:
|
||||
columns(Union[str, list[str]]):要投影列的列名列表。
|
||||
**参数:**
|
||||
|
||||
返回:
|
||||
ProjectDataset,投影后的数据集对象。
|
||||
- **columns** (Union[str, list[str]]) - 要投影列的列名列表。
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> columns_to_project = ["column3", "column1", "column2"]
|
||||
>>>
|
||||
>>> # 创建一个数据集,无论列的原始顺序如何,依次包含column3, column1, column2。
|
||||
>>> dataset = dataset.project(columns=columns_to_project)
|
||||
**返回:**
|
||||
|
||||
ProjectDataset,投影后的数据集对象。
|
||||
|
||||
rename(input_columns, output_columns)
|
||||
**样例:**
|
||||
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> columns_to_project = ["column3", "column1", "column2"]
|
||||
>>>
|
||||
>>> # 创建一个数据集,无论列的原始顺序如何,依次包含column3, column1, column2。
|
||||
>>> dataset = dataset.project(columns=columns_to_project)
|
||||
|
||||
.. py:method:: rename(input_columns, output_columns)
|
||||
|
||||
重命名输入数据集中的列。
|
||||
|
||||
参数:
|
||||
input_columns (Union[str, list[str]]):输入列的列名列表。
|
||||
output_columns (Union[str, list[str]]):输出列的列名列表。
|
||||
**参数:**
|
||||
|
||||
返回:
|
||||
RenameDataset,重命名后数据集对象。
|
||||
- **input_columns** (Union[str, list[str]]) - 输入列的列名列表。
|
||||
- **output_columns** (Union[str, list[str]]) - 输出列的列名列表。
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> input_columns = ["input_col1", "input_col2", "input_col3"]
|
||||
>>> output_columns = ["output_col1", "output_col2", "output_col3"]
|
||||
>>>
|
||||
>>> # 创建一个数据集,其中input_col1重命名为output_col1,
|
||||
>>> # input_col2重命名为output_col2,input_col3重命名
|
||||
>>> # 为output_col3。
|
||||
>>> dataset = dataset.rename(input_columns=input_columns, output_columns=output_columns)
|
||||
**返回:**
|
||||
|
||||
RenameDataset,重命名后数据集对象。
|
||||
|
||||
repeat(count=None)
|
||||
**样例:**
|
||||
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> input_columns = ["input_col1", "input_col2", "input_col3"]
|
||||
>>> output_columns = ["output_col1", "output_col2", "output_col3"]
|
||||
>>>
|
||||
>>> # 创建一个数据集,其中input_col1重命名为output_col1,
|
||||
>>> # input_col2重命名为output_col2,input_col3重命名
|
||||
>>> # 为output_col3。
|
||||
>>> dataset = dataset.rename(input_columns=input_columns, output_columns=output_columns)
|
||||
|
||||
.. py:method:: repeat(count=None)
|
||||
|
||||
重复此数据集`count`次。如果count为None或-1,则无限重复。
|
||||
|
||||
注:
|
||||
repeat和batch的顺序反映了batch的数量。建议:
|
||||
repeat操作在batch操作之后使用。
|
||||
.. note::
|
||||
|
||||
参数:
|
||||
count (int):数据集重复的次数(默认为None)。
|
||||
repeat和batch的顺序反映了batch的数量。建议:repeat操作在batch操作之后使用。
|
||||
|
||||
返回:
|
||||
RepeatDataset,重复操作后的数据集对象。
|
||||
**参数:**
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>>
|
||||
>>> # 创建一个数据集,数据集重复50个epoch。
|
||||
>>> dataset = dataset.repeat(50)
|
||||
>>>
|
||||
>>> # 创建一个数据集,其中每个epoch都是单独打乱的。
|
||||
>>> dataset = dataset.shuffle(10)
|
||||
>>> dataset = dataset.repeat(50)
|
||||
>>>
|
||||
>>> # 创建一个数据集,打乱前先将数据集重复
|
||||
>>> # 50个epoch。shuffle算子将
|
||||
>>> # 整个50个epoch视作一个大数据集。
|
||||
>>> dataset = dataset.repeat(50)
|
||||
>>> dataset = dataset.shuffle(10)
|
||||
- **count** (int) - 数据集重复的次数(默认为None)。
|
||||
|
||||
**返回:**
|
||||
|
||||
reset()
|
||||
重置下一个epoch的数据集。
|
||||
RepeatDataset,重复操作后的数据集对象。
|
||||
|
||||
save(file_name, num_files=1, file_type='mindrecord')
|
||||
**样例:**
|
||||
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>>
|
||||
>>> # 创建一个数据集,数据集重复50个epoch。
|
||||
>>> dataset = dataset.repeat(50)
|
||||
>>>
|
||||
>>> # 创建一个数据集,其中每个epoch都是单独打乱的。
|
||||
>>> dataset = dataset.shuffle(10)
|
||||
>>> dataset = dataset.repeat(50)
|
||||
>>>
|
||||
>>> # 创建一个数据集,打乱前先将数据集重复
|
||||
>>> # 50个epoch。shuffle算子将
|
||||
>>> # 整个50个epoch视作一个大数据集。
|
||||
>>> dataset = dataset.repeat(50)
|
||||
>>> dataset = dataset.shuffle(10)
|
||||
|
||||
..py:method:: reset()
|
||||
|
||||
重置下一个epoch的数据集。
|
||||
|
||||
..py:method:: save(file_name, num_files=1, file_type='mindrecord')
|
||||
|
||||
将流水线正在处理的数据保存为通用的数据集格式。
|
||||
支持的数据集格式:'mindrecord'。
|
||||
|
@ -309,31 +310,28 @@ save(file_name, num_files=1, file_type='mindrecord')
|
|||
- string
|
||||
- 不支持多维字符串
|
||||
|
||||
注:
|
||||
1. 如需按顺序保存示例,请将数据集的shuffle设置为False,将num_files设置为1。
|
||||
.. note::
|
||||
|
||||
1. 如需按顺序保存示例,请将数据集的shuffle设置为False,将 `num_files` 设置为1。
|
||||
2. 在调用函数之前,不要使用batch算子、repeat算子或具有随机属性的数据增强的map算子。
|
||||
|
||||
3. 当数据的维度可变时,只支持1维数组或者在0维变化的多维数组。
|
||||
|
||||
4. 不支持DE_UINT64类型、多维的DE_UINT8类型、多维DE_STRING类型。
|
||||
|
||||
**参数:**
|
||||
|
||||
参数:
|
||||
file_name (str):数据集文件的路径。
|
||||
num_files (int, optional):数据集文件的数量(默认为1)。
|
||||
file_type (str, optional):数据集格式(默认为'mindrecord')。
|
||||
- **file_name** (str) - 数据集文件的路径。
|
||||
- **num_files** (int, optional) - 数据集文件的数量(默认为1)。
|
||||
- **file_type** (str, optional) - 数据集格式(默认为'mindrecord')。
|
||||
|
||||
|
||||
|
||||
set_dynamic_columns(columns=None)
|
||||
..py:method:: set_dynamic_columns(columns=None)
|
||||
|
||||
设置源数据的动态shape信息,需要在定义数据处理流水线后设置。
|
||||
|
||||
参数:
|
||||
columns (dict):包含数据集中每列shape信息的字典。shape[i]为`None`表示shape[i]的数据长度是动态的。
|
||||
**参数:**
|
||||
|
||||
- **columns** (dict) - 包含数据集中每列shape信息的字典。shape[i]为`None`表示shape[i]的数据长度是动态的。
|
||||
|
||||
shuffle(buffer_size)
|
||||
..py:method:: shuffle(buffer_size)
|
||||
|
||||
使用以下策略随机打乱此数据集的行:
|
||||
|
||||
|
@ -345,220 +343,216 @@ shuffle(buffer_size)
|
|||
|
||||
可以提供随机种子,在第一个epoch中使用。在随后的每个epoch,种子都会被设置成一个新产生的随机值。
|
||||
|
||||
**参数:**
|
||||
|
||||
参数:
|
||||
buffer_size (int):用于shuffle的缓冲区大小(必须大于1)。
|
||||
将buffer_size设置为等于数据集大小将导致在全局shuffle。
|
||||
- **buffer_size** (int) - 用于shuffle的缓冲区大小(必须大于1)。将buffer_size设置为等于数据集大小将导致在全局shuffle。
|
||||
|
||||
**返回:**
|
||||
|
||||
返回:
|
||||
ShuffleDataset,打乱后的数据集对象。
|
||||
ShuffleDataset,打乱后的数据集对象。
|
||||
|
||||
异常:
|
||||
RuntimeError:打乱前存在同步操作。
|
||||
**异常:**
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> #可以选择设置第一个epoch的种子
|
||||
>>> ds.config.set_seed(58)
|
||||
>>> # 使用大小为4的shuffle缓冲区创建打乱后的数据集。
|
||||
>>> dataset = dataset.shuffle(4)
|
||||
- **RuntimeError** - 打乱前存在同步操作。
|
||||
|
||||
**样例:**
|
||||
|
||||
skip(count)
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> # 可以选择设置第一个epoch的种子
|
||||
>>> ds.config.set_seed(58)
|
||||
>>> # 使用大小为4的shuffle缓冲区创建打乱后的数据集。
|
||||
>>> dataset = dataset.shuffle(4)
|
||||
|
||||
..py:method:: skip(count)
|
||||
|
||||
跳过此数据集的前N个元素。
|
||||
|
||||
参数:
|
||||
count (int):要跳过的数据集中的元素个数。
|
||||
**参数:**
|
||||
|
||||
返回:
|
||||
SkipDataset,减去跳过的行的数据集对象。
|
||||
- **count** (int) - 要跳过的数据集中的元素个数。
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> # 创建一个数据集,跳过前3个元素
|
||||
>>> dataset = dataset.skip(3)
|
||||
**返回:**
|
||||
|
||||
SkipDataset,减去跳过的行的数据集对象。
|
||||
|
||||
split(sizes, randomize=True)
|
||||
**样例:**
|
||||
|
||||
>>> # dataset是Dataset对象的实例
|
||||
>>> # 创建一个数据集,跳过前3个元素
|
||||
>>> dataset = dataset.skip(3)
|
||||
|
||||
..py:method:: split(sizes, randomize=True)
|
||||
|
||||
将数据集拆分为多个不重叠的数据集。
|
||||
|
||||
这是一个通用拆分函数,可以被数据处理流水线中的任何算子调用。
|
||||
还有如果直接调用ds.split,其中 ds 是一个 MappableDataset,它将被自动调用。
|
||||
|
||||
**参数:**
|
||||
|
||||
参数:
|
||||
sizes (Union[list[int], list[float]]):如果指定了一列整数[s1, s2, …, sn],数据集将被拆分为n个大小为s1、s2、...、sn的数据集。
|
||||
- **sizes** (Union[list[int], list[float]]) - 如果指定了一列整数[s1, s2, …, sn],数据集将被拆分为n个大小为s1、s2、...、sn的数据集。如果所有输入大小的总和不等于原始数据集大小,则报错。如果指定了一列浮点数[f1, f2, …, fn],则所有浮点数必须介于0和1之间,并且总和必须为1,否则报错。数据集将被拆分为n个大小为round(f1*K)、round(f2*K)、...、round(fn*K)的数据集,其中K是原始数据集的大小。
|
||||
|
||||
如果所有输入大小的总和不等于原始数据集大小,则报错。
|
||||
|
||||
如果指定了一列浮点数[f1, f2, …, fn],则所有浮点数必须介于0和1之间,并且总和必须为1,否则报错。
|
||||
数据集将被拆分为n个大小为round(f1*K)、round(f2*K)、...、round(fn*K)的数据集,其中K是原始数据集的大小。
|
||||
|
||||
|
||||
如果舍入后:
|
||||
如果舍入后:
|
||||
|
||||
- 任何大小等于0,都将发生错误。
|
||||
- 如果拆分大小的总和<K,K - sigma(round(fi * k))的差值将添加到第一个子数据集。
|
||||
|
||||
- 如果拆分大小的总和>K,sigma(round(fi * K)) - K的差值将从第一个足够大的拆分子集中删除,删除差值后至少有1行。
|
||||
|
||||
- **randomize** (bool, optional):确定是否随机拆分数据(默认为True)。如果为True,则数据集将被随机拆分。否则,将使用数据集中的连续行创建每个拆分子集。
|
||||
|
||||
randomize (bool, optional):确定是否随机拆分数据(默认为True)。
|
||||
如果为True,则数据集将被随机拆分。否则,将使用数据集中的连续行创建每个拆分子集。
|
||||
.. note::
|
||||
|
||||
|
||||
注:
|
||||
1. 如果要调用 split,则无法对数据集进行分片。
|
||||
2. 强烈建议不要对数据集进行打乱,而是使用随机化(randomize=True)。
|
||||
对数据集进行打乱的结果具有不确定性,每个拆分子集中的数据在每个epoch可能都不同。
|
||||
2. 强烈建议不要对数据集进行打乱,而是使用随机化(randomize=True)。对数据集进行打乱的结果具有不确定性,每个拆分子集中的数据在每个epoch可能都不同。
|
||||
|
||||
**异常:**
|
||||
|
||||
异常:
|
||||
RuntimeError:get_dataset_size返回None或此数据集不支持。
|
||||
RuntimeError:sizes是整数列表,并且size中所有元素的总和不等于数据集大小。
|
||||
- **RuntimeError** - get_dataset_size返回None或此数据集不支持。
|
||||
- **RuntimeError** - sizes是整数列表,并且size中所有元素的总和不等于数据集大小。
|
||||
- **RuntimeError** - sizes是float列表,并且计算后存在大小为0的拆分子数据集。
|
||||
- **RuntimeError** - 数据集在调用拆分之前已进行分片。
|
||||
- **ValueError** - sizes是float列表,且并非所有float数都在0和1之间,或者float数的总和不等于1。
|
||||
|
||||
RuntimeError:sizes是float列表,并且计算后存在大小为0的拆分子数据集。
|
||||
RuntimeError:数据集在调用拆分之前已进行分片。
|
||||
ValueError:sizes是float列表,且并非所有float数都在0和1之间,或者
|
||||
float数的总和不等于1。
|
||||
**返回:**
|
||||
|
||||
返回:
|
||||
tuple(Dataset),拆分后子数据集对象的元组。
|
||||
tuple(Dataset),拆分后子数据集对象的元组。
|
||||
|
||||
示例:
|
||||
>>> # TextFileDataset不是可映射dataset,因此将调用通用拆分函数。
|
||||
>>> # 由于许多数据集默认都打开了shuffle,如需调用拆分函数,请将shuffle设置为False。
|
||||
>>> dataset = ds.TextFileDataset(text_file_dataset_dir, shuffle=False)
|
||||
>>> train_dataset, test_dataset = dataset.split([0.9, 0.1])
|
||||
**样例:**
|
||||
|
||||
>>> # TextFileDataset不是可映射dataset,因此将调用通用拆分函数。
|
||||
>>> # 由于许多数据集默认都打开了shuffle,如需调用拆分函数,请将shuffle设置为False。
|
||||
>>> dataset = ds.TextFileDataset(text_file_dataset_dir, shuffle=False)
|
||||
>>> train_dataset, test_dataset = dataset.split([0.9, 0.1])
|
||||
|
||||
sync_update(condition_name, num_batch=None, data=None)
|
||||
..py:method:: sync_update(condition_name, num_batch=None, data=None)
|
||||
|
||||
释放阻塞条件并使用给定数据触发回调函数。
|
||||
|
||||
参数:
|
||||
condition_name (str):用于切换发送下一行数据的条件名称。
|
||||
num_batch (Union[int, None]):释放的batch(row)数。
|
||||
当num_batch为None时,将默认为sync_wait算子指定的值(默认为None)。
|
||||
**参数:**
|
||||
|
||||
data (Any):用户自定义传递给回调函数的数据(默认为None)。
|
||||
- **condition_name** (str) - 用于切换发送下一行数据的条件名称。
|
||||
- **num_batch** (Union[int, None]) - 释放的batch(row)数。当 `num_batch` 为None时,将默认为 `sync_wait` 算子指定的值(默认为None)。
|
||||
- **data** (Any) - 用户自定义传递给回调函数的数据(默认为None)。
|
||||
|
||||
|
||||
sync_wait(condition_name, num_batch=1, callback=None)
|
||||
..py:method:: sync_wait(condition_name, num_batch=1, callback=None)
|
||||
|
||||
向输入数据集添加阻塞条件。 将应用同步操作。
|
||||
|
||||
参数:
|
||||
condition_name (str):用于切换发送下一行的条件名称。
|
||||
num_batch (int):每个epoch开始时无阻塞的batch数。
|
||||
callback (function):sync_update中将调用的回调函数。
|
||||
**参数:**
|
||||
|
||||
返回:
|
||||
SyncWaitDataset,添加了阻塞条件的数据集对象。
|
||||
- **condition_name** (str) - 用于切换发送下一行的条件名称。
|
||||
- **num_batch** (int) - 每个epoch开始时无阻塞的batch数。
|
||||
- **callback** (function) - `sync_update` 中将调用的回调函数。
|
||||
|
||||
异常:
|
||||
RuntimeError:条件名称已存在。
|
||||
**返回:**
|
||||
|
||||
示例:
|
||||
>>> import numpy as np
|
||||
>>> def gen():
|
||||
... for i in range(100):
|
||||
... yield (np.array(i),)
|
||||
>>>
|
||||
>>> class Augment:
|
||||
... def __init__(self, loss):
|
||||
... self.loss = loss
|
||||
...
|
||||
... def preprocess(self, input_):
|
||||
... return input_
|
||||
...
|
||||
... def update(self, data):
|
||||
... self.loss = data["loss"]
|
||||
>>>
|
||||
>>> batch_size = 4
|
||||
>>> dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||
>>>
|
||||
>>> aug = Augment(0)
|
||||
>>> dataset = dataset.sync_wait(condition_name="policy", callback=aug.update)
|
||||
>>> dataset = dataset.map(operations=[aug.preprocess], input_columns=["input"])
|
||||
>>> dataset = dataset.batch(batch_size)
|
||||
>>> count = 0
|
||||
>>> for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
... assert data["input"][0] == count
|
||||
... count += batch_size
|
||||
... data = {"loss": count}
|
||||
... dataset.sync_update(condition_name="policy", data=data)
|
||||
SyncWaitDataset,添加了阻塞条件的数据集对象。
|
||||
|
||||
**异常:**
|
||||
|
||||
take(count=-1)
|
||||
- **RuntimeError** - 条件名称已存在。
|
||||
|
||||
**样例:**
|
||||
|
||||
>>> import numpy as np
|
||||
>>> def gen():
|
||||
... for i in range(100):
|
||||
... yield (np.array(i),)
|
||||
>>>
|
||||
>>> class Augment:
|
||||
... def __init__(self, loss):
|
||||
... self.loss = loss
|
||||
...
|
||||
... def preprocess(self, input_):
|
||||
... return input_
|
||||
...
|
||||
... def update(self, data):
|
||||
... self.loss = data["loss"]
|
||||
>>>
|
||||
>>> batch_size = 4
|
||||
>>> dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||
>>>
|
||||
>>> aug = Augment(0)
|
||||
>>> dataset = dataset.sync_wait(condition_name="policy", callback=aug.update)
|
||||
>>> dataset = dataset.map(operations=[aug.preprocess], input_columns=["input"])
|
||||
>>> dataset = dataset.batch(batch_size)
|
||||
>>> count = 0
|
||||
>>> for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
... assert data["input"][0] == count
|
||||
... count += batch_size
|
||||
... data = {"loss": count}
|
||||
... dataset.sync_update(condition_name="policy", data=data)
|
||||
|
||||
..py:method:: take(count=-1)
|
||||
|
||||
从数据集中获取最多给定数量的元素。
|
||||
|
||||
注:
|
||||
1. 如果count大于数据集中的元素数或等于-1,则取数据集中的所有元素。
|
||||
.. note::
|
||||
|
||||
1. 如果count大于数据集中的元素数或等于-1,则取数据集中的所有元素。
|
||||
2. take和batch操作顺序很重要,如果take在batch操作之前,则取给定行数;否则取给定batch数。
|
||||
|
||||
**参数:**
|
||||
|
||||
参数:
|
||||
count (int, optional):要从数据集中获取的元素数(默认为-1)。
|
||||
- **count** (int, optional) - 要从数据集中获取的元素数(默认为-1)。
|
||||
|
||||
返回:
|
||||
TakeDataset,取出指定数目的数据集对象。
|
||||
**返回:**
|
||||
|
||||
示例:
|
||||
>>> # dataset是Dataset对象的实例。
|
||||
>>> # 创建一个数据集,包含50个元素。
|
||||
>>> dataset = dataset.take(50)
|
||||
TakeDataset,取出指定数目的数据集对象。
|
||||
|
||||
**样例:**
|
||||
|
||||
to_device(send_epoch_end=True, create_data_info_queue=False)
|
||||
>>> # dataset是Dataset对象的实例。
|
||||
>>> # 创建一个数据集,包含50个元素。
|
||||
>>> dataset = dataset.take(50)
|
||||
|
||||
..py:method:: to_device(send_epoch_end=True, create_data_info_queue=False)
|
||||
|
||||
将数据从CPU传输到GPU、Ascend或其他设备。
|
||||
|
||||
参数:
|
||||
send_epoch_end (bool, optional):是否将end of sequence发送到设备(默认为True)。
|
||||
create_data_info_queue (bool, optional):是否创建存储数据类型和shape的队列(默认为False)。
|
||||
**参数:**
|
||||
|
||||
- **send_epoch_end** (bool, optional) - 是否将end of sequence发送到设备(默认为True)。
|
||||
- **create_data_info_queue** (bool, optional) - 是否创建存储数据类型和shape的队列(默认为False)。
|
||||
|
||||
.. note::
|
||||
|
||||
注:
|
||||
如果设备为Ascend,则逐个传输数据。每次传输的数据大小限制为256M。
|
||||
|
||||
**返回:**
|
||||
|
||||
返回:
|
||||
TransferDataset,用于传输的数据集对象。
|
||||
TransferDataset,用于传输的数据集对象。
|
||||
|
||||
异常:
|
||||
RuntimeError:如果提供了分布式训练的文件路径但读取失败。
|
||||
**异常:**
|
||||
|
||||
- **RuntimeError** - 如果提供了分布式训练的文件路径但读取失败。
|
||||
|
||||
to_json(filename='')
|
||||
..py:method:: to_json(filename='')
|
||||
|
||||
将数据处理流水线序列化为JSON字符串,如果提供了文件名,则转储到文件中。
|
||||
|
||||
参数:
|
||||
filename (str):另存为JSON格式的文件名。
|
||||
**参数:**
|
||||
|
||||
返回:
|
||||
str,流水线的JSON字符串。
|
||||
- **filename** (str) - 另存为JSON格式的文件名。
|
||||
|
||||
**返回:**
|
||||
|
||||
zip(datasets)
|
||||
str,流水线的JSON字符串。
|
||||
|
||||
将数据集和输入的数据集或者数据集元组按列进行合并压缩。输入数据集中的列名必须
|
||||
不同。
|
||||
..py:method:: zip(datasets)
|
||||
|
||||
参数:
|
||||
datasets (Union[tuple, class Dataset]):数据集对象的元组或单个数据集对象
|
||||
与当前数据集一起合并压缩。
|
||||
将数据集和输入的数据集或者数据集元组按列进行合并压缩。输入数据集中的列名必须不同。
|
||||
|
||||
返回:
|
||||
ZipDataset,合并压缩后的数据集对象。
|
||||
**参数:**
|
||||
|
||||
示例:
|
||||
>>> # 创建一个数据集,它将dataset和dataset_1进行合并
|
||||
>>> dataset = dataset.zip(dataset_1)
|
||||
- **datasets** (Union[tuple, class Dataset]) - 数据集对象的元组或单个数据集对象与当前数据集一起合并压缩。
|
||||
|
||||
**返回:**
|
||||
|
||||
ZipDataset,合并压缩后的数据集对象。
|
||||
|
||||
**样例:**
|
||||
|
||||
>>> # 创建一个数据集,它将dataset和dataset_1进行合并
|
||||
>>> dataset = dataset.zip(dataset_1)
|
||||
|
|
@ -1,19 +1,21 @@
|
|||
mindspore.dataset.zip(datasets)
|
||||
.. py:function:: mindspore.dataset.zip(datasets)
|
||||
|
||||
将多个dataset对象按列进行合并压缩。
|
||||
|
||||
参数:
|
||||
datasets (tuple of class Dataset):输入元组格式的多个dataset对象。
|
||||
datasets参数的长度必须大于1。
|
||||
**参数:**
|
||||
|
||||
返回:
|
||||
ZipDataset,合并后的dataset对象。
|
||||
- **datasets** (tuple of class Dataset) - 输入元组格式的多个dataset对象。 `datasets` 参数的长度必须大于1。
|
||||
|
||||
异常:
|
||||
ValueError:datasets参数的长度为1。
|
||||
TypeError:datasets参数不是元组。
|
||||
**返回:**
|
||||
|
||||
示例:
|
||||
>>> # 创建一个将dataset_1和dataset_2合并后数据集dataset。
|
||||
>>> dataset = ds.zip((dataset_1, dataset_2))
|
||||
ZipDataset,合并后的dataset对象。
|
||||
|
||||
**异常:**
|
||||
|
||||
- **ValueError** - datasets参数的长度为1。
|
||||
- **TypeError** - datasets参数不是元组。
|
||||
|
||||
**样例:**
|
||||
|
||||
>>> # 创建一个将dataset_1和dataset_2合并后数据集dataset。
|
||||
>>> dataset = ds.zip((dataset_1, dataset_2))
|
||||
|
|
Loading…
Reference in New Issue