forked from mindspore-Ecosystem/mindspore
add summary st for ops
This commit is contained in:
parent
f8df9e1be6
commit
f2978e0721
|
@ -0,0 +1,52 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""dataset base."""
|
||||
import os
|
||||
|
||||
from mindspore import dataset as ds
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.dataset.transforms import c_transforms as C
|
||||
from mindspore.dataset.vision import Inter
|
||||
from mindspore.dataset.vision import c_transforms as CV
|
||||
|
||||
|
||||
def create_mnist_dataset(mode='train', num_samples=2, batch_size=2):
|
||||
"""create dataset for train or test"""
|
||||
mnist_path = '/home/workspace/mindspore_dataset/mnist'
|
||||
num_parallel_workers = 1
|
||||
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(os.path.join(mnist_path, mode), num_samples=num_samples, shuffle=False)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081)
|
||||
rescale_op = CV.Rescale(1.0 / 255.0, shift=0.0)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
mnist_ds = mnist_ds.batch(batch_size=batch_size, drop_remainder=True)
|
||||
|
||||
return mnist_ds
|
|
@ -12,29 +12,23 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test model train """
|
||||
"""test SummaryCollector."""
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
import shutil
|
||||
|
||||
import tempfile
|
||||
from collections import Counter
|
||||
|
||||
import pytest
|
||||
|
||||
from mindspore import dataset as ds
|
||||
from mindspore import nn, Tensor, context
|
||||
from mindspore.common.initializer import Normal
|
||||
from mindspore.nn.metrics import Loss
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.dataset.transforms import c_transforms as C
|
||||
from mindspore.dataset.vision import c_transforms as CV
|
||||
from mindspore.dataset.vision import Inter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import Normal
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.callback import SummaryCollector
|
||||
|
||||
from tests.st.summary.dataset import create_mnist_dataset
|
||||
from tests.summary_utils import SummaryReader
|
||||
|
||||
|
||||
|
@ -52,6 +46,7 @@ class LeNet5(nn.Cell):
|
|||
>>> LeNet(num_class=10)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10, num_channel=1, include_top=True):
|
||||
super(LeNet5, self).__init__()
|
||||
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
|
||||
|
@ -72,6 +67,7 @@ class LeNet5(nn.Cell):
|
|||
self.channel = Tensor(num_channel)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct."""
|
||||
self.image_summary('image', x)
|
||||
x = self.conv1(x)
|
||||
self.histogram_summary('histogram', x)
|
||||
|
@ -92,43 +88,9 @@ class LeNet5(nn.Cell):
|
|||
return x
|
||||
|
||||
|
||||
def create_dataset(data_path, num_samples=2):
|
||||
"""create dataset for train or test"""
|
||||
num_parallel_workers = 1
|
||||
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(data_path, num_samples=num_samples)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift=0.0)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size=2, drop_remainder=True)
|
||||
|
||||
return mnist_ds
|
||||
|
||||
|
||||
class TestSummary:
|
||||
"""Test summary collector the basic function."""
|
||||
base_summary_dir = ''
|
||||
mnist_path = '/home/workspace/mindspore_dataset/mnist'
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
|
@ -144,6 +106,7 @@ class TestSummary:
|
|||
shutil.rmtree(cls.base_summary_dir)
|
||||
|
||||
def _run_network(self, dataset_sink_mode=False, num_samples=2, **kwargs):
|
||||
"""run network."""
|
||||
lenet = LeNet5()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
|
@ -151,10 +114,10 @@ class TestSummary:
|
|||
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
|
||||
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=2, **kwargs)
|
||||
|
||||
ds_train = create_dataset(os.path.join(self.mnist_path, "train"), num_samples=num_samples)
|
||||
ds_train = create_mnist_dataset("train", num_samples=num_samples)
|
||||
model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
|
||||
|
||||
ds_eval = create_dataset(os.path.join(self.mnist_path, "test"))
|
||||
ds_eval = create_mnist_dataset("test")
|
||||
model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
|
||||
return summary_dir
|
||||
|
||||
|
@ -202,10 +165,12 @@ class TestSummary:
|
|||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summarycollector_user_defind(self):
|
||||
"""Test SummaryCollector with user defind."""
|
||||
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=2, user_defind={'test': 'self test'})
|
||||
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=2,
|
||||
custom_lineage_data={'test': 'self test'})
|
||||
|
||||
tag_list = self._list_summary_tags(summary_dir)
|
||||
# There will not record input data when dataset sink mode is True
|
||||
|
@ -213,9 +178,9 @@ class TestSummary:
|
|||
'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
|
||||
assert set(expected_tags) == set(tag_list)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _list_summary_tags(summary_dir):
|
||||
"""list summary tags."""
|
||||
summary_file_path = ''
|
||||
for file in os.listdir(summary_dir):
|
||||
if re.search("_MS", file):
|
|
@ -0,0 +1,115 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test summary ops."""
|
||||
import os
|
||||
import shutil
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mindspore import nn, Tensor, context
|
||||
from mindspore.common.initializer import Normal
|
||||
from mindspore.nn.metrics import Loss
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.summary.summary_record import _get_summary_tensor_data
|
||||
from tests.st.summary.dataset import create_mnist_dataset
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""LeNet network"""
|
||||
|
||||
def __init__(self, num_class=10, num_channel=1, include_top=True):
|
||||
super(LeNet5, self).__init__()
|
||||
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
|
||||
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.include_top = include_top
|
||||
if self.include_top:
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
|
||||
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
|
||||
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
|
||||
|
||||
self.scalar_summary = P.ScalarSummary()
|
||||
self.image_summary = P.ImageSummary()
|
||||
self.tensor_summary = P.TensorSummary()
|
||||
self.channel = Tensor(num_channel)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct"""
|
||||
self.image_summary('x', x)
|
||||
self.tensor_summary('x', x)
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
if not self.include_top:
|
||||
return x
|
||||
x = self.flatten(x)
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.relu(self.fc2(x))
|
||||
x = self.fc3(x)
|
||||
self.scalar_summary('x_fc3', x[0][0])
|
||||
return x
|
||||
|
||||
|
||||
class TestSummaryOps:
|
||||
"""Test summary ops."""
|
||||
base_summary_dir = ''
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
"""Run before test this class."""
|
||||
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
|
||||
context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
|
||||
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
|
||||
|
||||
@classmethod
|
||||
def teardown_class(cls):
|
||||
"""Run after test this class."""
|
||||
if os.path.exists(cls.base_summary_dir):
|
||||
shutil.rmtree(cls.base_summary_dir)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summary_ops(self):
|
||||
"""Test summary operators."""
|
||||
ds_train = create_mnist_dataset('train', num_samples=1, batch_size=1)
|
||||
ds_train_iter = ds_train.create_dict_iterator()
|
||||
expected_data = next(ds_train_iter)['image'].asnumpy()
|
||||
|
||||
net = LeNet5()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(net, loss_fn=loss, optimizer=optim, metrics={'loss': Loss()})
|
||||
model.train(1, ds_train, dataset_sink_mode=False)
|
||||
|
||||
summary_data = _get_summary_tensor_data()
|
||||
image_data = summary_data['x[:Image]'].asnumpy()
|
||||
tensor_data = summary_data['x[:Tensor]'].asnumpy()
|
||||
x_fc3 = summary_data['x_fc3[:Scalar]'].asnumpy()
|
||||
|
||||
assert np.allclose(expected_data, image_data)
|
||||
assert np.allclose(expected_data, tensor_data)
|
||||
assert not np.allclose(0, x_fc3)
|
Loading…
Reference in New Issue