Add training and evaluation of Transformer on GPU

Add gradients clipping to NASNet training and adjust hyper-parameters
This commit is contained in:
dessyang 2020-09-25 15:58:59 -04:00
parent fa5c9c1528
commit f27f047f14
9 changed files with 196 additions and 49 deletions

View File

@ -23,7 +23,7 @@ nasnet_a_mobile_config_gpu = edict({
'rank': 0, 'rank': 0,
'group_size': 1, 'group_size': 1,
'work_nums': 8, 'work_nums': 8,
'epoch_size': 500, 'epoch_size': 600,
'keep_checkpoint_max': 100, 'keep_checkpoint_max': 100,
'ckpt_path': './checkpoint/', 'ckpt_path': './checkpoint/',
'is_save_on_master': 0, 'is_save_on_master': 0,
@ -39,7 +39,7 @@ nasnet_a_mobile_config_gpu = edict({
### Learning Rate Config ### Learning Rate Config
# 'lr_decay_method': 'exponential', # 'lr_decay_method': 'exponential',
'lr_init': 0.04, 'lr_init': 0.04*8,
'lr_decay_rate': 0.97, 'lr_decay_rate': 0.97,
'num_epoch_per_decay': 2.4, 'num_epoch_per_decay': 2.4,

View File

@ -29,7 +29,7 @@ from mindspore.common import dtype as mstype
from src.config import nasnet_a_mobile_config_gpu as cfg from src.config import nasnet_a_mobile_config_gpu as cfg
from src.dataset import create_dataset from src.dataset import create_dataset
from src.nasnet_a_mobile import NASNetAMobile, CrossEntropy from src.nasnet_a_mobile import NASNetAMobileWithLoss, NASNetAMobileTrainOneStepWithClipGradient
from src.lr_generator import get_lr from src.lr_generator import get_lr
@ -69,13 +69,10 @@ if __name__ == '__main__':
batches_per_epoch = dataset.get_dataset_size() batches_per_epoch = dataset.get_dataset_size()
# network # network
net = NASNetAMobile(cfg.num_classes) net_with_loss = NASNetAMobileWithLoss(cfg)
if args_opt.resume: if args_opt.resume:
ckpt = load_checkpoint(args_opt.resume) ckpt = load_checkpoint(args_opt.resume)
load_param_into_net(net, ckpt) load_param_into_net(net_with_loss, ckpt)
#loss
loss = CrossEntropy(smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes, factor=cfg.aux_factor)
# learning rate schedule # learning rate schedule
lr = get_lr(lr_init=cfg.lr_init, lr_decay_rate=cfg.lr_decay_rate, lr = get_lr(lr_init=cfg.lr_init, lr_decay_rate=cfg.lr_decay_rate,
@ -88,26 +85,28 @@ if __name__ == '__main__':
resume = split_result[-2].split("-") resume = split_result[-2].split("-")
resume_epoch = int(resume[-1]) resume_epoch = int(resume[-1])
step_num_in_epoch = int(split_result[-1]) step_num_in_epoch = int(split_result[-1])
assert step_num_in_epoch == ds_train.get_dataset_size()\ assert step_num_in_epoch == dataset.get_dataset_size()\
, "This script only supports resuming at the end of epoch" , "This script only supports resuming at the end of epoch"
lr = lr[(ds_train.get_dataset_size() * (resume_epoch - 1) + step_num_in_epoch):] lr = lr[(dataset.get_dataset_size() * (resume_epoch - 1) + step_num_in_epoch):]
lr = Tensor(lr, mstype.float32) lr = Tensor(lr, mstype.float32)
# optimizer # optimizer
decayed_params = [] decayed_params = []
no_decayed_params = [] no_decayed_params = []
for param in net.trainable_params(): for param in net_with_loss.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param) decayed_params.append(param)
else: else:
no_decayed_params.append(param) no_decayed_params.append(param)
group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay}, group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
{'params': no_decayed_params}, {'params': no_decayed_params},
{'order_params': net.trainable_params()}] {'order_params': net_with_loss.trainable_params()}]
optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay, optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay,
momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale) momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale)
model = Model(net, loss_fn=loss, optimizer=optimizer) net_with_grads = NASNetAMobileTrainOneStepWithClipGradient(net_with_loss, optimizer)
net_with_grads.set_train()
model = Model(net_with_grads)
print("============== Starting Training ==============") print("============== Starting Training ==============")
loss_cb = LossMonitor(per_print_times=batches_per_epoch) loss_cb = LossMonitor(per_print_times=batches_per_epoch)

View File

@ -14,7 +14,7 @@
# ============================================================================ # ============================================================================
"""Transformer evaluation script.""" """Transformer evaluation script."""
import os import argparse
import numpy as np import numpy as np
import mindspore.nn as nn import mindspore.nn as nn
@ -97,9 +97,14 @@ def run_transformer_eval():
""" """
Transformer evaluation. Transformer evaluation.
""" """
device_id = int(os.getenv('DEVICE_ID')) parser = argparse.ArgumentParser(description='tranformer')
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False, parser.add_argument("--device_target", type=str, default="Ascend",
device_id=device_id) help="device where the code will be implemented, default is Ascend")
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, reserve_class_name_in_scope=False,
device_id=args.device_id)
dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=cfg.data_file) dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=cfg.data_file)
tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False) tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False)

View File

@ -0,0 +1,47 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "sh run_distribute_pretrain_gpu.sh DEVICE_NUM EPOCH_SIZE DATA_PATH"
echo "for example: sh run_distribute_pretrain.sh 8 55 /path/ende-l128-mindrecord00"
echo "It is better to use absolute path."
echo "=============================================================================================================="
rm -rf run_distribute_train
mkdir run_distribute_train
cp -rf ./src/ train.py ./run_distribute_train
cd run_distribute_train || exit
export RANK_SIZE=$1
EPOCH_SIZE=$2
DATA_PATH=$3
echo $RANK_SIZE
mpirun -n $RANK_SIZE \
python train.py \
--distribute="true" \
--device_target="GPU" \
--epoch_size=$EPOCH_SIZE \
--device_num=$RANK_SIZE \
--enable_save_ckpt="true" \
--enable_lossscale="true" \
--do_shuffle="true" \
--checkpoint_path="" \
--save_checkpoint_steps=2500 \
--save_checkpoint_num=30 \
--data_path=$DATA_PATH \
--bucket_boundaries=[16,32,48,64,128] > log.txt 2>&1 &

View File

@ -0,0 +1,29 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "sh run_eval.sh DEVICE_TARGET DEVICE_ID"
echo "for example: sh run_eval.sh Ascend 0"
echo "Note: set the checkpoint and dataset path in src/eval_config.py"
echo "=============================================================================================================="
export DEVICE_TARGET=$1
DEVICE_ID=$2
python eval.py \
--device_target=$DEVICE_TARGET \
--device_id=$DEVICE_ID \

View File

@ -16,8 +16,8 @@
echo "==============================================================================================================" echo "=============================================================================================================="
echo "Please run the scipt as: " echo "Please run the scipt as: "
echo "sh run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_PATH" echo "sh run_standalone_train.sh DEVICE_TARGET DEVICE_ID EPOCH_SIZE DATA_PATH"
echo "for example: sh run_standalone_train.sh 0 52 /path/ende-l128-mindrecord00" echo "for example: sh run_standalone_train.sh Ascend 0 52 /path/ende-l128-mindrecord00"
echo "It is better to use absolute path." echo "It is better to use absolute path."
echo "==============================================================================================================" echo "=============================================================================================================="
@ -26,13 +26,15 @@ mkdir run_standalone_train
cp -rf ./src/ train.py ./run_standalone_train cp -rf ./src/ train.py ./run_standalone_train
cd run_standalone_train || exit cd run_standalone_train || exit
export DEVICE_ID=$1 export DEVICE_TARGET=$1
EPOCH_SIZE=$2 DEVICE_ID=$2
DATA_PATH=$3 EPOCH_SIZE=$3
DATA_PATH=$4
python train.py \ python train.py \
--distribute="false" \ --distribute="false" \
--epoch_size=$EPOCH_SIZE \ --epoch_size=$EPOCH_SIZE \
--device_target=$DEVICE_TARGET \
--device_id=$DEVICE_ID \ --device_id=$DEVICE_ID \
--enable_save_ckpt="true" \ --enable_save_ckpt="true" \
--enable_lossscale="true" \ --enable_lossscale="true" \
@ -42,4 +44,4 @@ python train.py \
--save_checkpoint_num=30 \ --save_checkpoint_num=30 \
--data_path=$DATA_PATH \ --data_path=$DATA_PATH \
--bucket_boundaries=[16,32,48,64,128] > log.txt 2>&1 & --bucket_boundaries=[16,32,48,64,128] > log.txt 2>&1 &
cd .. cd ..

View File

@ -23,6 +23,7 @@ cfg = edict({
'scale_factor': 2, 'scale_factor': 2,
'scale_window': 2000, 'scale_window': 2000,
'optimizer': 'Adam', 'optimizer': 'Adam',
'optimizer_adam_beta2': 0.997,
'lr_schedule': edict({ 'lr_schedule': edict({
'learning_rate': 2.0, 'learning_rate': 2.0,
'warmup_steps': 8000, 'warmup_steps': 8000,
@ -51,6 +52,23 @@ if cfg.transformer_network == 'large':
input_mask_from_dataset=True, input_mask_from_dataset=True,
dtype=mstype.float32, dtype=mstype.float32,
compute_type=mstype.float16) compute_type=mstype.float16)
transformer_net_cfg_gpu = TransformerConfig(
batch_size=32,
seq_length=128,
vocab_size=36560,
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="relu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=128,
initializer_range=0.02,
label_smoothing=0.1,
input_mask_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16)
if cfg.transformer_network == 'base': if cfg.transformer_network == 'base':
transformer_net_cfg = TransformerConfig( transformer_net_cfg = TransformerConfig(
batch_size=96, batch_size=96,

View File

@ -166,7 +166,7 @@ class TransformerTrainOneStepCell(nn.Cell):
self.reducer_flag = False self.reducer_flag = False
self.parallel_mode = context.get_auto_parallel_context("parallel_mode") self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
if self.parallel_mode not in ParallelMode.MODE_LIST: if self.parallel_mode not in ParallelMode.MODE_LIST:
raise ValueError("Parallel mode does not support: ", parallel_mode) raise ValueError("Parallel mode does not support: ", self.parallel_mode)
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]: if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
self.reducer_flag = True self.reducer_flag = True
self.grad_reducer = None self.grad_reducer = None
@ -228,6 +228,12 @@ reciprocal = P.Reciprocal()
def tensor_grad_scale(scale, grad): def tensor_grad_scale(scale, grad):
return grad * F.cast(reciprocal(scale), F.dtype(grad)) return grad * F.cast(reciprocal(scale), F.dtype(grad))
_grad_overflow = C.MultitypeFuncGraph("_grad_overflow")
grad_overflow = P.FloatStatus()
@_grad_overflow.register("Tensor")
def _tensor_grad_overflow(grad):
return grad_overflow(grad)
class TransformerTrainOneStepWithLossScaleCell(nn.Cell): class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
""" """
@ -255,7 +261,7 @@ class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
self.parallel_mode = _get_parallel_mode() self.parallel_mode = _get_parallel_mode()
if self.parallel_mode not in ParallelMode.MODE_LIST: if self.parallel_mode not in ParallelMode.MODE_LIST:
raise ValueError("Parallel mode does not support: ", parallel_mode) raise ValueError("Parallel mode does not support: ", self.parallel_mode)
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]: if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
self.reducer_flag = True self.reducer_flag = True
self.grad_reducer = None self.grad_reducer = None
@ -266,9 +272,16 @@ class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE)
self.clip_gradients = ClipGradients() self.clip_gradients = ClipGradients()
self.cast = P.Cast() self.cast = P.Cast()
self.alloc_status = P.NPUAllocFloatStatus() if context.get_context("device_target") == "GPU":
self.get_status = P.NPUGetFloatStatus() self.gpu_target = True
self.clear_before_grad = P.NPUClearFloatStatus() self.float_status = P.FloatStatus()
self.addn = P.AddN()
self.reshape = P.Reshape()
else:
self.gpu_target = False
self.alloc_status = P.NPUAllocFloatStatus()
self.get_status = P.NPUGetFloatStatus()
self.clear_before_grad = P.NPUClearFloatStatus()
self.reduce_sum = P.ReduceSum(keep_dims=False) self.reduce_sum = P.ReduceSum(keep_dims=False)
self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.depend_parameter_use = P.ControlDepend(depend_mode=1)
self.base = Tensor(1, mstype.float32) self.base = Tensor(1, mstype.float32)
@ -305,10 +318,12 @@ class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
target_mask, target_mask,
label_ids, label_ids,
label_weights) label_weights)
# alloc status init = False
init = self.alloc_status() if not self.gpu_target:
# clear overflow buffer # alloc status
self.clear_before_grad(init) init = self.alloc_status()
# clear overflow buffer
self.clear_before_grad(init)
if sens is None: if sens is None:
scaling_sens = self.loss_scale scaling_sens = self.loss_scale
else: else:
@ -327,8 +342,16 @@ class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
if self.reducer_flag: if self.reducer_flag:
# apply grad reducer on grads # apply grad reducer on grads
grads = self.grad_reducer(grads) grads = self.grad_reducer(grads)
self.get_status(init)
flag_sum = self.reduce_sum(init, (0,)) if not self.gpu_target:
self.get_status(init)
# sum overflow buffer elements, 0: not overflow, >0: overflow
flag_sum = self.reduce_sum(init, (0,))
else:
flag_sum = self.hyper_map(F.partial(_grad_overflow), grads)
flag_sum = self.addn(flag_sum)
# convert flag_sum to scalar
flag_sum = self.reshape(flag_sum, (()))
if self.is_distributed: if self.is_distributed:
# sum overflow flag over devices # sum overflow flag over devices

View File

@ -35,7 +35,7 @@ from mindspore.common import set_seed
from src.transformer_for_train import TransformerTrainOneStepCell, TransformerNetworkWithLoss, \ from src.transformer_for_train import TransformerTrainOneStepCell, TransformerNetworkWithLoss, \
TransformerTrainOneStepWithLossScaleCell TransformerTrainOneStepWithLossScaleCell
from src.config import cfg, transformer_net_cfg from src.config import cfg, transformer_net_cfg, transformer_net_cfg_gpu
from src.dataset import create_transformer_dataset from src.dataset import create_transformer_dataset
from src.lr_schedule import create_dynamic_lr from src.lr_schedule import create_dynamic_lr
@ -73,13 +73,17 @@ class LossCallBack(Callback):
time_stamp_current = get_ms_timestamp() time_stamp_current = get_ms_timestamp()
cb_params = run_context.original_args() cb_params = run_context.original_args()
print("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first, print("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first,
cb_params.cur_epoch_num, cb_params.cur_step_num, cb_params.cur_epoch_num,
cb_params.cur_step_num,
str(cb_params.net_outputs))) str(cb_params.net_outputs)))
with open("./loss_{}.log".format(self.rank_id), "a+") as f: with open("./loss_{}.log".format(self.rank_id), "a+") as f:
f.write("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first, f.write("time: {}, epoch: {}, step: {}, loss: {}, overflow: {}, loss_scale: {}".format(
cb_params.cur_epoch_num, time_stamp_current - time_stamp_first,
cb_params.cur_step_num, cb_params.cur_epoch_num,
str(cb_params.net_outputs))) cb_params.cur_step_num,
str(cb_params.net_outputs[0].asnumpy()),
str(cb_params.net_outputs[1].asnumpy()),
str(cb_params.net_outputs[2].asnumpy())))
f.write('\n') f.write('\n')
@ -91,6 +95,8 @@ def argparse_init():
parser.add_argument("--distribute", type=str, default="false", choices=['true', 'false'], parser.add_argument("--distribute", type=str, default="false", choices=['true', 'false'],
help="Run distribute, default is false.") help="Run distribute, default is false.")
parser.add_argument("--epoch_size", type=int, default=52, help="Epoch size, default is 52.") parser.add_argument("--epoch_size", type=int, default=52, help="Epoch size, default is 52.")
parser.add_argument("--device_target", type=str, default="Ascend",
help="device where the code will be implemented, default is Ascend")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--enable_lossscale", type=str, default="true", choices=['true', 'false'], parser.add_argument("--enable_lossscale", type=str, default="true", choices=['true', 'false'],
@ -116,15 +122,21 @@ def run_transformer_train():
""" """
parser = argparse_init() parser = argparse_init()
args, _ = parser.parse_known_args() args, _ = parser.parse_known_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
context.set_context(reserve_class_name_in_scope=False, enable_auto_mixed_precision=False) context.set_context(reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
if args.distribute == "true": if args.distribute == "true":
device_num = args.device_num if args.device_target == "Ascend":
device_num = args.device_num
D.init('hccl')
else:
D.init('nccl')
device_num = D.get_group_size()
rank = get_rank()
args.device_id = rank
context.reset_auto_parallel_context() context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num) device_num=device_num)
D.init()
rank_id = args.device_id % device_num rank_id = args.device_id % device_num
save_ckpt_path = os.path.join(args.save_checkpoint_path, 'ckpt_' + str(get_rank()) + '/') save_ckpt_path = os.path.join(args.save_checkpoint_path, 'ckpt_' + str(get_rank()) + '/')
else: else:
@ -135,27 +147,39 @@ def run_transformer_train():
rank_id=rank_id, do_shuffle=args.do_shuffle, rank_id=rank_id, do_shuffle=args.do_shuffle,
dataset_path=args.data_path, dataset_path=args.data_path,
bucket_boundaries=args.bucket_boundaries) bucket_boundaries=args.bucket_boundaries)
if args.device_target == "Ascend":
netwithloss = TransformerNetworkWithLoss(transformer_net_cfg, True) netwithloss = TransformerNetworkWithLoss(transformer_net_cfg, True)
else:
netwithloss = TransformerNetworkWithLoss(transformer_net_cfg_gpu, True)
if args.checkpoint_path: if args.checkpoint_path:
parameter_dict = load_checkpoint(args.checkpoint_path) parameter_dict = load_checkpoint(args.checkpoint_path)
load_param_into_net(netwithloss, parameter_dict) load_param_into_net(netwithloss, parameter_dict)
hidden_size = transformer_net_cfg.hidden_size if args.device_target == "Ascend" \
else transformer_net_cfg_gpu.hidden_size
lr = Tensor(create_dynamic_lr(schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay", lr = Tensor(create_dynamic_lr(schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay",
training_steps=dataset.get_dataset_size()*args.epoch_size, training_steps=dataset.get_dataset_size()*args.epoch_size,
learning_rate=cfg.lr_schedule.learning_rate, learning_rate=cfg.lr_schedule.learning_rate,
warmup_steps=cfg.lr_schedule.warmup_steps, warmup_steps=cfg.lr_schedule.warmup_steps,
hidden_size=transformer_net_cfg.hidden_size, hidden_size=hidden_size,
start_decay_step=cfg.lr_schedule.start_decay_step, start_decay_step=cfg.lr_schedule.start_decay_step,
min_lr=cfg.lr_schedule.min_lr), mstype.float32) min_lr=cfg.lr_schedule.min_lr), mstype.float32)
optimizer = Adam(netwithloss.trainable_params(), lr)
if args.device_target == "GPU" and cfg.transformer_network == "large":
optimizer = Adam(netwithloss.trainable_params(), lr, beta2=cfg.optimizer_adam_beta2)
else:
optimizer = Adam(netwithloss.trainable_params(), lr)
callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(rank_id=rank_id)] callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(rank_id=rank_id)]
if args.enable_save_ckpt == "true": if args.enable_save_ckpt == "true":
if device_num == 1 or (device_num > 1 and rank_id == 0): if device_num == 1 or (device_num > 1 and rank_id == 0):
ckpt_config = CheckpointConfig(save_checkpoint_steps=args.save_checkpoint_steps, if args.device_target == "Ascend":
keep_checkpoint_max=args.save_checkpoint_num) ckpt_config = CheckpointConfig(save_checkpoint_steps=args.save_checkpoint_steps,
keep_checkpoint_max=args.save_checkpoint_num)
else:
ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset.get_dataset_size(),
keep_checkpoint_max=args.save_checkpoint_num)
ckpoint_cb = ModelCheckpoint(prefix='transformer', directory=save_ckpt_path, config=ckpt_config) ckpoint_cb = ModelCheckpoint(prefix='transformer', directory=save_ckpt_path, config=ckpt_config)
callbacks.append(ckpoint_cb) callbacks.append(ckpoint_cb)