diff --git a/mindspore/dataset/engine/datasets.py b/mindspore/dataset/engine/datasets.py index c840d92fbd8..5bf8a9b3b97 100644 --- a/mindspore/dataset/engine/datasets.py +++ b/mindspore/dataset/engine/datasets.py @@ -2209,7 +2209,7 @@ class ConcatDataset(DatasetOp): Number, number of batches. """ children_sizes = [c.get_dataset_size() for c in self.input] - dataset_size = sum(children_sizes) + dataset_size = np.sum(children_sizes) return dataset_size @@ -2219,8 +2219,8 @@ class RenameDataset(DatasetOp): Args: input_dataset (Dataset): Input Dataset to be Renamed. - input_columns (list[str]): list of names of the input columns. - output_columns (list[str]): list of names of the output columns. + input_column_names (list[str]): list of names of the input columns. + output_column_names (list[str]): list of names of the output columns. """ def __init__(self, input_dataset, input_columns, output_columns): @@ -4737,39 +4737,58 @@ class _NumpySlicesDataset: def __init__(self, data, column_list=None): self.column_list = None # Convert dict data into tuple - if isinstance(data, dict): + if isinstance(data, dict) or isinstance(data[0], dict): data = self.process_dict(data) - if isinstance(data, tuple): - self.data = () - data_len = len(data) - for i in range(data_len): - self.data = self.data + (np.array(data[i]),) + if isinstance(data[0], tuple) or isinstance(data, tuple): + self.is_tuple = True + self.data = data + if isinstance(data[0], tuple): + for i in range(len(self.data)): + self.data[i] = np.array(self.data[i]) else: - self.data = (np.array(data),) + self.is_tuple = False + self.data = np.array(data) # Init column_name if column_list is not None: self.column_list = column_list elif self.column_list is None: self.column_list = [] - column_num = len(self.data) + column_num = len(self.data) if self.is_tuple else 1 for i in range(column_num): self.column_list.append("column_" + str(i)) def __getitem__(self, index): - data_row = [d[index, ...] for d in self.data] - data_res = tuple(data_row) + if self.is_tuple: + data_row = [] + for i in range(len(self.data)): + data_row.append(self.data[i][index, ...]) + data_res = tuple(data_row) + else: + data_row = self.data[index, ...] + data_row = [data_row] + data_res = tuple(data_row) + return data_res def __len__(self): - return len(self.data[0]) + if self.is_tuple: + return len(self.data[0]) + return len(self.data) def process_dict(self, input_data): """ Convert the dict like data into tuple format, when input is a tuple of dict then compose it into a dict first. """ - # Convert pandas like dict(has "values" column) into General dict + # When input is a tuple of dict, composing it + if isinstance(input_data, tuple) and isinstance(input_data[0], dict): + data_dict = {} + for d in input_data: + data_dict.update(d) + input_data = data_dict + + # convert pandas like dict(has "values" column) into General dict data_keys = list(input_data.keys()) data_col = input_data[data_keys[0]] if hasattr(data_col, "values"): @@ -4780,12 +4799,13 @@ class _NumpySlicesDataset: input_data = new_dict # Convert the data in dict into tuple - data = () - keys = list(input_data.keys()) - self.column_list = keys + data = [] + self.column_list = [] + keys = input_data.keys() for key in keys: + self.column_list.append(key) value = input_data[key] - data = data + (list(value),) + data.append(tuple(value)) return data @@ -4824,7 +4844,7 @@ class NumpySlicesDataset(GeneratorDataset): - not allowed Args: - data (list, tuple or dict) Input of Given data, supported data type includes list, tuple, dict and other numpy + data(list, tuple or dict)Input of Given data, supported data type includes list, tuple, dict and other numpy format. Input data will be sliced in first dimension and generate many rows, large data is not recommend to load in this way as data is loading into memory. column_names (list[str], optional): List of column names of the dataset (default=None). If column_names not @@ -4848,8 +4868,8 @@ class NumpySlicesDataset(GeneratorDataset): >>> # 2) Input data can be a dict, and column_names will be its key >>> data = {"a": [1, 2], "b": [3, 4]} >>> dataset2 = ds.NumpySlicesDataset(data) - >>> # 3) Input data can be a tuple of lists (or numpy arrays), each tuple element refers to data in each column - >>> data = ([1, 2], [3, 4], [5, 6]) + >>> # 3) Input data can be a tuple (or list of tuple), and each tuple element refers to data in each column + >>> data = ((1, 2), (3, 4), (5, 6)) >>> dataset3 = ds.NumpySlicesDataset(data, column_names=["column_1", "column_2", "column_3"]) >>> # 4) Load data from csv file >>> import pandas as pd diff --git a/mindspore/dataset/engine/validators.py b/mindspore/dataset/engine/validators.py index 99016459b6f..f924acb57ac 100644 --- a/mindspore/dataset/engine/validators.py +++ b/mindspore/dataset/engine/validators.py @@ -1484,11 +1484,8 @@ def check_numpyslicesdataset(method): # check data; required argument data = param_dict.get('data') if not isinstance(data, (list, tuple, dict, np.ndarray)): - raise TypeError("Unsupported data type: {}, only support some common python data type, " - "like list, tuple, dict, and numpy array.".format(type(data))) - if isinstance(data, tuple) and not isinstance(data[0], (list, np.ndarray)): - raise TypeError("Unsupported data type: when input is tuple, only support some common python " - "data type, like tuple of lists and tuple of numpy arrays.") + raise TypeError("Unsupported data type: {}, only support some common python data type, \ + like list, tuple, dict, and numpy array.".format(type(data))) if not data: raise ValueError("Input data is empty.") @@ -1502,17 +1499,20 @@ def check_numpyslicesdataset(method): if isinstance(data, dict): data_column = len(list(data.keys())) if column_num != data_column: - raise ValueError("Num of input column names is {0}, but required is {1}." - .format(column_num, data_column)) + raise ValueError("Num of column is {0}, but required is {1}.".format(column_num, data_column)) - elif isinstance(data, tuple): + # Consider input is a tuple of dict + elif isinstance(data[0], dict): + data_column = sum(len(list(data[i].keys())) for i in range(len(data))) + if column_num != data_column: + raise ValueError("Num of column is {0}, but required is {1}.".format(column_num, data_column)) + + elif isinstance(data[0], tuple) or isinstance(data, tuple): if column_num != len(data): - raise ValueError("Num of input column names is {0}, but required is {1}." - .format(column_num, len(data))) + raise ValueError("Num of column is {0}, but required is {1}.".format(column_num, len(data))) else: if column_num != 1: - raise ValueError("Num of input column names is {0}, but required is {1} as data is list." - .format(column_num, 1)) + raise ValueError("Num of column is {0}, but required is {1} as data is list.".format(column_num, 1)) return method(*args, **kwargs) diff --git a/tests/ut/python/dataset/test_dataset_numpy_slices.py b/tests/ut/python/dataset/test_dataset_numpy_slices.py index 4cd4e26a337..d9d6e397446 100644 --- a/tests/ut/python/dataset/test_dataset_numpy_slices.py +++ b/tests/ut/python/dataset/test_dataset_numpy_slices.py @@ -81,32 +81,34 @@ def test_numpy_slices_dict_1(): assert data[1] == res[i][1] +def test_numpy_slices_dict_2(): + logger.info("Test input data is a tuple of Dictionary structure data.") + + data1, data2 = {"a": [1, 2]}, {"b": [3, 4]} + ds = de.NumpySlicesDataset((data1, data2), column_names=["col1", "col2"], shuffle=False) + res = [[1, 3], [2, 4]] + + for i, data in enumerate(ds): + assert data[0] == res[i][0] + assert data[1] == res[i][1] + + def test_numpy_slices_tuple_1(): logger.info("Test slicing a list of tuple.") np_data = [([1, 2], [3, 4]), ([11, 12], [13, 14]), ([21, 22], [23, 24])] + res = [[[1, 2], [11, 12], [21, 22]], [[3, 4], [13, 14], [23, 24]]] ds = de.NumpySlicesDataset(np_data, shuffle=False) for i, data in enumerate(ds): - assert np.equal(data, np_data[i]).all() - - assert sum([1 for _ in ds]) == 3 - - -def test_numpy_slices_tuple_2(): - logger.info("Test slicing a tuple of list.") - - np_data = ([1, 2], [3, 4], [5, 6]) - expected = [[1, 3, 5], [2, 4, 6]] - ds = de.NumpySlicesDataset(np_data, shuffle=False) - - for i, data in enumerate(ds): - assert np.equal(data, expected[i]).all() + assert np.equal(data[0], res[i][0]).all() + assert np.equal(data[1], res[i][1]).all() + assert np.equal(data[2], res[i][2]).all() assert sum([1 for _ in ds]) == 2 -def test_numpy_slices_tuple_3(): +def test_numpy_slices_tuple_2(): logger.info("Test reading different dimension of tuple data.") features, labels = np.random.sample((5, 2)), np.random.sample((5, 1)) data = (features, labels) @@ -189,9 +191,9 @@ if __name__ == "__main__": test_numpy_slices_list_3() test_numpy_slices_list_append() test_numpy_slices_dict_1() + test_numpy_slices_dict_2() test_numpy_slices_tuple_1() test_numpy_slices_tuple_2() - test_numpy_slices_tuple_3() test_numpy_slices_csv_value() test_numpy_slices_csv_dict() test_numpy_slices_num_samplers()