forked from mindspore-Ecosystem/mindspore
!3007 GPU debugger and GPU dump - milestone 1
Merge pull request !3007 from john_tzanakakis/master_ms1
This commit is contained in:
commit
ef18c5f879
3
build.sh
3
build.sh
|
@ -279,6 +279,9 @@ checkopts()
|
|||
done
|
||||
}
|
||||
checkopts "$@"
|
||||
if [[ "X$ENABLE_GPU" = "Xon" ]] && [[ "X$ENABLE_DUMPE2E" = "Xon" ]]; then
|
||||
ENABLE_DEBUGGER="on"
|
||||
fi
|
||||
echo "---------------- MindSpore: build start ----------------"
|
||||
mkdir -pv "${BUILD_PATH}/package/mindspore/lib"
|
||||
git submodule update --init graphengine
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
#include "common/trans.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
#include "utils/base_ref_extends.h"
|
||||
#include "debug/tensor_load.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace session {
|
||||
|
@ -164,7 +165,11 @@ void GPUSession::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
|
|||
void GPUSession::Execute(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
if (!runtime_instance->Run(kernel_graph.get(), debugger_.get())) {
|
||||
#else
|
||||
if (!runtime_instance->Run(kernel_graph.get())) {
|
||||
#endif
|
||||
MS_LOG(EXCEPTION) << "GPU execute graph failed!";
|
||||
}
|
||||
}
|
||||
|
@ -229,6 +234,9 @@ GraphId GPUSession::CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList
|
|||
|
||||
void GPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) {
|
||||
auto &kernel_graph = graphs_[graph_id];
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
PreIterationDbg(kernel_graph);
|
||||
#endif
|
||||
// Load input data from user input
|
||||
LoadInputData(kernel_graph, inputs);
|
||||
#if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
|
||||
|
@ -245,6 +253,9 @@ void GPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::Ten
|
|||
// Run graph on GPU
|
||||
Execute(kernel_graph);
|
||||
}
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
PostLoadTensor(kernel_graph);
|
||||
#endif
|
||||
// Get result from GPU
|
||||
UpdateOutputs(kernel_graph, outputs, inputs);
|
||||
// Summary
|
||||
|
@ -253,6 +264,9 @@ void GPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::Ten
|
|||
if (context_ptr->enable_gpu_summary()) {
|
||||
Summary(kernel_graph.get());
|
||||
}
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
PostIterationDbg(kernel_graph);
|
||||
#endif
|
||||
}
|
||||
|
||||
void GPUSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
|
@ -296,6 +310,70 @@ py::tuple GPUSession::RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph
|
|||
RunOpClearMemory(kernel_graph.get());
|
||||
return tuple_tensors;
|
||||
}
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
void GPUSession::Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
(void)runtime_instance->DumpData(kernel_graph.get(), debugger_.get());
|
||||
#endif
|
||||
}
|
||||
|
||||
bool GPUSession::DumpDataEnabledIteration() const {
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
return runtime_instance->DumpDataEnabledIteration();
|
||||
}
|
||||
|
||||
void GPUSession::PreIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
if (debugger_) {
|
||||
debugger_->PreExecute(kernel_graph);
|
||||
}
|
||||
PreLoadTensor(kernel_graph);
|
||||
}
|
||||
|
||||
void GPUSession::PostIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
bool dump_enabled = DumpDataEnabledIteration();
|
||||
// debug used for dump
|
||||
if (debugger_ && dump_enabled) {
|
||||
Dump(kernel_graph);
|
||||
}
|
||||
if (debugger_) {
|
||||
debugger_->PostExecute();
|
||||
}
|
||||
}
|
||||
|
||||
void GPUSession::PreLoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
bool dump_enabled = DumpDataEnabledIteration();
|
||||
if (!(debugger_ && (debugger_->debugger_enabled() || dump_enabled))) {
|
||||
return;
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
DebugServices *debug_services = debugger_->debug_services();
|
||||
TensorLoader *tensor_loader = debug_services->tensor_loader();
|
||||
tensor_loader->EmptyTensor();
|
||||
uint32_t iter_num = tensor_loader->GetIterNum();
|
||||
tensor_loader->set_iter_num(++iter_num);
|
||||
}
|
||||
|
||||
void GPUSession::PostLoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
bool dump_enabled = DumpDataEnabledIteration();
|
||||
if (!(debugger_ && (debugger_->debugger_enabled() || dump_enabled))) {
|
||||
return;
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
DebugServices *debug_services = debugger_->debug_services();
|
||||
TensorLoader *tensor_loader = debug_services->tensor_loader();
|
||||
tensor_loader->EmptyPrevTensor();
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace gpu
|
||||
} // namespace session
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -67,6 +67,20 @@ class GPUSession : public SessionBasic {
|
|||
const std::vector<tensor::TensorPtr> &inputs_const) const override;
|
||||
|
||||
void Execute(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
void Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
|
||||
bool DumpDataEnabledIteration() const;
|
||||
|
||||
void PreIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
|
||||
void PostIterationDbg(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
|
||||
void PreLoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
|
||||
void PostLoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
#endif
|
||||
};
|
||||
using GPUSessionPtr = std::shared_ptr<GPUSession>;
|
||||
MS_REG_SESSION(kGPUDevice, GPUSession);
|
||||
|
|
|
@ -24,7 +24,6 @@
|
|||
#include "backend/kernel_compiler/common_utils.h"
|
||||
#include "frontend/operator/ops.h"
|
||||
#include "common/trans.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
#include "utils/config_manager.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/kernel_compiler/oplib/oplib.h"
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include "utils/contract.h"
|
||||
#include "pipeline/pynative/pynative_execute.h"
|
||||
#include "runtime/device/kernel_info.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
#include "debug/debugger/debugger.h"
|
||||
#endif
|
||||
|
@ -112,7 +113,9 @@ class SessionBasic {
|
|||
// set debugger
|
||||
void SetDebugger() {
|
||||
debugger_ = Debugger::GetInstance();
|
||||
debugger_->Init(device_id_);
|
||||
auto ms_context = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(ms_context);
|
||||
debugger_->Init(device_id_, ms_context->device_target());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@ if (ENABLE_DEBUGGER)
|
|||
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/grpc_client.cc"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/proto_exporter.cc"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/debug_services.cc"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/common.cc"
|
||||
)
|
||||
endif (ENABLE_DEBUGGER)
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include "debug/debugger/debugger.h"
|
||||
#include "pipeline/jit/pipeline.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "runtime/device/kernel_runtime_manager.h"
|
||||
|
||||
using debugger::EventReply;
|
||||
using debugger::GraphProto;
|
||||
|
@ -41,17 +42,20 @@ Debugger::Debugger()
|
|||
: grpc_client_(nullptr),
|
||||
debug_services_(nullptr),
|
||||
device_id_(0),
|
||||
device_target_(""),
|
||||
num_step_(0),
|
||||
debugger_enabled_(false),
|
||||
is_dataset_graph_(false),
|
||||
partial_memory_(false) {}
|
||||
|
||||
void Debugger::Init(const uint32_t device_id) {
|
||||
void Debugger::Init(const uint32_t device_id, const std::string device_target) {
|
||||
// access lock for public method
|
||||
std::lock_guard<std::mutex> a_lock(access_lock_);
|
||||
// save device_id
|
||||
MS_LOG(INFO) << "Debugger got device_id: " << device_id;
|
||||
device_id_ = device_id;
|
||||
MS_LOG(INFO) << "Debugger got device_target: " << device_target;
|
||||
device_target_ = device_target;
|
||||
}
|
||||
|
||||
void Debugger::EnableDebugger() {
|
||||
|
@ -62,6 +66,14 @@ void Debugger::EnableDebugger() {
|
|||
grpc_client_ = nullptr;
|
||||
debug_services_ = nullptr;
|
||||
|
||||
// see if dump is enabled
|
||||
bool dump_enabled = false;
|
||||
if (device_target_ == kGPUDevice) {
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
dump_enabled = runtime_instance->DumpDataEnabled();
|
||||
}
|
||||
|
||||
// get env variables to configure debugger
|
||||
const char *env_enable_str = std::getenv("ENABLE_MS_DEBUGGER");
|
||||
if (env_enable_str != nullptr) {
|
||||
|
@ -70,7 +82,8 @@ void Debugger::EnableDebugger() {
|
|||
debugger_enabled_ = true;
|
||||
}
|
||||
}
|
||||
if (!debugger_enabled_) {
|
||||
|
||||
if (!debugger_enabled_ && !dump_enabled) {
|
||||
MS_LOG(WARNING) << "Not enabling debugger. Set environment variable ENABLE_MS_DEBUGGER=1 to enable debugger.";
|
||||
return;
|
||||
}
|
||||
|
@ -118,7 +131,10 @@ void Debugger::EnableDebugger() {
|
|||
}
|
||||
|
||||
// initialize grpc client
|
||||
grpc_client_ = std::make_unique<GrpcClient>(host, port);
|
||||
if (debugger_enabled_) {
|
||||
grpc_client_ = std::make_unique<GrpcClient>(host, port);
|
||||
}
|
||||
|
||||
debug_services_ = std::make_unique<DebugServices>();
|
||||
}
|
||||
|
||||
|
@ -127,6 +143,7 @@ void Debugger::Reset() {
|
|||
std::lock_guard<std::mutex> a_lock(access_lock_);
|
||||
// reset components
|
||||
device_id_ = 0;
|
||||
device_target_ = "";
|
||||
num_step_ = 0;
|
||||
debugger_enabled_ = false;
|
||||
is_dataset_graph_ = false;
|
||||
|
|
|
@ -55,7 +55,7 @@ class Debugger : public std::enable_shared_from_this<Debugger> {
|
|||
|
||||
// init
|
||||
// only save device_id
|
||||
void Init(const uint32_t device_id);
|
||||
void Init(const uint32_t device_id, const std::string device_target);
|
||||
|
||||
// reset debugger
|
||||
void Reset();
|
||||
|
@ -128,6 +128,7 @@ class Debugger : public std::enable_shared_from_this<Debugger> {
|
|||
std::unique_ptr<DebugServices> debug_services_;
|
||||
KernelGraphPtr graph_ptr_;
|
||||
uint32_t device_id_;
|
||||
std::string device_target_;
|
||||
int32_t num_step_;
|
||||
bool debugger_enabled_;
|
||||
bool is_dataset_graph_;
|
||||
|
|
|
@ -24,6 +24,10 @@
|
|||
#include <string>
|
||||
#include <utility>
|
||||
#include "debug/tensor_data.h"
|
||||
#include "ir/dtype.h"
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
#include "debug/e2e_dump.h"
|
||||
#endif
|
||||
namespace mindspore {
|
||||
class TensorLoader {
|
||||
public:
|
||||
|
@ -72,8 +76,54 @@ class TensorLoader {
|
|||
|
||||
void EmptyPrevTensor() { prev_tensor_list_map.clear(); }
|
||||
|
||||
void EmptyCurrentTensor() {
|
||||
tensor_list_map.clear();
|
||||
tensor_list.clear();
|
||||
}
|
||||
|
||||
void set_iter_num(uint32_t iter_num) { this->iter_num = iter_num; }
|
||||
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
bool DumpTensorToFile(std::string tensor_name, bool trans_flag, const std::string &filepath,
|
||||
const std::string &host_fmt, const std::vector<int> &host_shape, TypeId host_type,
|
||||
TypeId addr_type_id, std::string addr_format, size_t slot) const {
|
||||
bool ret = false;
|
||||
if (filepath.empty()) {
|
||||
MS_LOG(ERROR) << "Dump file path is null!";
|
||||
return ret;
|
||||
}
|
||||
std::string shape = "shape";
|
||||
if (host_shape.size()) {
|
||||
for (auto &value : host_shape) {
|
||||
shape = shape + '_' + std::to_string(value);
|
||||
}
|
||||
} else {
|
||||
shape = shape + "_0";
|
||||
}
|
||||
std::string file_extension = ".bin";
|
||||
std::string path = "";
|
||||
if (trans_flag) {
|
||||
path = filepath + '_' + shape + '_' + TypeIdLabel(host_type) + '_' + host_fmt + file_extension;
|
||||
} else {
|
||||
path = filepath + '_' + shape + '_' + TypeIdToType(addr_type_id)->ToString() + '_' + addr_format + file_extension;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Dump path is " << path;
|
||||
|
||||
std::string tensor_loader_name = tensor_name + ":" + std::to_string(slot);
|
||||
auto iter = tensor_list_map.find(tensor_loader_name);
|
||||
if (iter != tensor_list_map.end()) {
|
||||
std::shared_ptr<TensorData> node = iter->second;
|
||||
mindspore::tensor::TensorPtr out_tensor = node->GetTensor();
|
||||
size_t host_size = out_tensor->data().nbytes();
|
||||
|
||||
ret = mindspore::Dump::DumpToFile(path, out_tensor->data_c(), host_size);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
private:
|
||||
std::vector<std::shared_ptr<TensorData>> tensor_list;
|
||||
std::map<std::string, std::shared_ptr<TensorData>> tensor_list_map;
|
||||
|
|
|
@ -275,7 +275,7 @@ void DumpParameters(mindspore::session::KernelGraph *graph, const string &dump_p
|
|||
} // namespace
|
||||
#endif
|
||||
|
||||
bool AscendKernelRuntime::DumpData(mindspore::session::KernelGraph *graph) {
|
||||
bool AscendKernelRuntime::DumpData(mindspore::session::KernelGraph *graph, Debugger *debugger) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
MS_LOG(INFO) << "Start dump step";
|
||||
|
|
|
@ -38,7 +38,7 @@ class AscendKernelRuntime : public KernelRuntime {
|
|||
AscendKernelRuntime() = default;
|
||||
~AscendKernelRuntime() override;
|
||||
bool Init() override;
|
||||
bool DumpData(session::KernelGraph *graph) override;
|
||||
bool DumpData(session::KernelGraph *graph, Debugger *debugger = nullptr) override;
|
||||
bool LoadData(session::KernelGraph *graph, Debugger *debugger) override;
|
||||
bool GenTask(const session::KernelGraph *graph) override;
|
||||
bool RunTask(const session::KernelGraph *graph) override;
|
||||
|
|
|
@ -270,7 +270,7 @@ void CPUKernelRuntime::DecreaseSummaryRefCount(const session::NamedSummaryOutput
|
|||
resource_manager_.DecreaseSummaryRefCount(summary_outputs);
|
||||
}
|
||||
|
||||
bool CPUKernelRuntime::Run(session::KernelGraph *kernel_graph) {
|
||||
bool CPUKernelRuntime::Run(session::KernelGraph *kernel_graph, Debugger *debugger) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
resource_manager_.IncreaseAddressRefCount(kernel_graph);
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ class CPUKernelRuntime : public KernelRuntime {
|
|||
~CPUKernelRuntime() override = default;
|
||||
|
||||
bool Init() override { return true; }
|
||||
bool Run(session::KernelGraph *graph) override;
|
||||
bool Run(session::KernelGraph *graph, Debugger *debugger = nullptr) override;
|
||||
void AssignKernelAddress(session::KernelGraph *kernel_graph);
|
||||
void BindInputOutput(const session::KernelGraph *kernel_graph, const std::vector<tensor::TensorPtr> &inputs,
|
||||
VectorRef *outputs, std::vector<tensor::TensorPtr> *need_sync_outputs);
|
||||
|
|
|
@ -16,9 +16,16 @@
|
|||
|
||||
#include "runtime/device/gpu/gpu_device_address.h"
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "runtime/device/gpu/gpu_device_manager.h"
|
||||
#include "utils/log_adapter.h"
|
||||
#include "runtime/device/gpu/gpu_memory_allocator.h"
|
||||
#include "ir/tensor.h"
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
#include "debug/debug_services.h"
|
||||
#include "debug/tensor_load.h"
|
||||
#include "debug/debugger/debugger.h"
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
|
@ -59,6 +66,36 @@ GPUDeviceAddress::~GPUDeviceAddress() {
|
|||
ptr_ = nullptr;
|
||||
}
|
||||
}
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
bool GPUDeviceAddress::LoadMemToHost(const std::string &tensor_name, int execution_order, const std::string &host_fmt,
|
||||
const std::vector<int> &host_shape, TypeId host_type, size_t slot,
|
||||
Debugger *debugger, bool keep_prev) const {
|
||||
bool ret = false;
|
||||
if (size_ == 0) {
|
||||
return true;
|
||||
}
|
||||
DebugServices *debug_services = debugger->debug_services();
|
||||
TensorLoader *tensor_loader = debug_services->tensor_loader();
|
||||
|
||||
mindspore::tensor::TensorPtr out_tensor = std::make_shared<tensor::Tensor>(type_id_, host_shape);
|
||||
size_t host_size = out_tensor->data().nbytes();
|
||||
auto ret_rt_memcpy = SyncDeviceToHost(host_shape, host_size, host_type, out_tensor->data_c());
|
||||
if (!ret_rt_memcpy) {
|
||||
MS_LOG(ERROR) << "Copy device mem to host failed";
|
||||
return ret;
|
||||
}
|
||||
auto tensor_data = std::make_shared<mindspore::TensorData>();
|
||||
tensor_data->SetName(tensor_name);
|
||||
tensor_data->SetExecutionOrder(execution_order);
|
||||
tensor_data->SetTensor(out_tensor);
|
||||
tensor_data->SetSlot(slot);
|
||||
ret = tensor_loader->LoadNewTensor(tensor_data, keep_prev);
|
||||
|
||||
MS_LOG(INFO) << "E2E tensor name is " << tensor_name;
|
||||
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
} // namespace gpu
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -22,6 +22,9 @@
|
|||
#include "runtime/device/device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
class Debugger;
|
||||
#endif
|
||||
namespace device {
|
||||
namespace gpu {
|
||||
class GPUDeviceAddress : public DeviceAddress {
|
||||
|
@ -37,6 +40,11 @@ class GPUDeviceAddress : public DeviceAddress {
|
|||
DeviceAddressStatus status() const { return status_; }
|
||||
DeviceAddressType DeviceType() const override { return DeviceAddressType::kGPU; }
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
bool LoadMemToHost(const std::string &tensor_name, int execution_order, const std::string &host_fmt,
|
||||
const std::vector<int> &host_shape, TypeId host_type, size_t slot, Debugger *debugger,
|
||||
bool keep_prev) const;
|
||||
#endif
|
||||
private:
|
||||
DeviceAddressStatus status_{DeviceAddressStatus::kInDevice};
|
||||
};
|
||||
|
|
|
@ -13,8 +13,8 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "runtime/device/gpu/gpu_kernel_runtime.h"
|
||||
#include <algorithm>
|
||||
#include "runtime/device/gpu/gpu_device_address.h"
|
||||
#include "runtime/device/gpu/cuda_driver.h"
|
||||
#include "runtime/device/gpu/gpu_buffer_mgr.h"
|
||||
|
@ -29,6 +29,8 @@
|
|||
#include "runtime/device/gpu/gpu_memory_manager.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
#include "runtime/device/gpu/gpu_memory_copy_manager.h"
|
||||
#include "common/trans.h"
|
||||
#include "ir/dtype.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
|
@ -36,6 +38,7 @@ namespace gpu {
|
|||
using mindspore::device::memswap::MemSwapInfoSet;
|
||||
using mindspore::device::memswap::MemSwapManager;
|
||||
using mindspore::device::memswap::SwapKind;
|
||||
static const size_t PARAMETER_OUTPUT_INDEX = 0;
|
||||
bool GPUKernelRuntime::SyncStream() { return GPUDeviceManager::GetInstance().SyncStream(stream_); }
|
||||
|
||||
bool GPUKernelRuntime::Init() {
|
||||
|
@ -43,7 +46,15 @@ bool GPUKernelRuntime::Init() {
|
|||
GPUMemoryAllocator::GetInstance().CheckMaxDeviceMemory();
|
||||
return true;
|
||||
}
|
||||
auto ret = InitDevice();
|
||||
bool ret = false;
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
ret = SetDumpConf();
|
||||
if (!ret) {
|
||||
MS_LOG(INFO) << "No dump conf to set!";
|
||||
}
|
||||
#endif
|
||||
|
||||
ret = InitDevice();
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "InitDevice error.";
|
||||
return ret;
|
||||
|
@ -63,6 +74,216 @@ bool GPUKernelRuntime::Init() {
|
|||
return ret;
|
||||
}
|
||||
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
namespace {
|
||||
void DumpOutput(mindspore::session::KernelGraph *graph, const string &dump_path, DumpConfPtr dump_conf,
|
||||
Debugger *debugger) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(dump_conf);
|
||||
bool trans_flag = dump_conf->trans_flag();
|
||||
const auto &apply_kernels = graph->execution_order();
|
||||
for (const auto &node : apply_kernels) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto node_name = AnfAlgo::GetCNodeName(node);
|
||||
std::string kernel_name = node->fullname_with_scope();
|
||||
if (!dump_conf->IsKernelNeedDump(kernel_name)) {
|
||||
continue;
|
||||
}
|
||||
const std::string strsrc = "/";
|
||||
const std::string strdst = "--";
|
||||
std::string::size_type pos = 0;
|
||||
std::string::size_type srclen = strsrc.size();
|
||||
std::string::size_type dstlen = strdst.size();
|
||||
while ((pos = kernel_name.find(strsrc, pos)) != std::string::npos) {
|
||||
kernel_name.replace(pos, srclen, strdst);
|
||||
pos += dstlen;
|
||||
}
|
||||
auto output_size = AnfAlgo::GetOutputTensorNum(node);
|
||||
for (size_t j = 0; j < output_size; ++j) {
|
||||
auto addr = AnfAlgo::GetOutputAddr(node, j);
|
||||
TypeId addr_type_id = addr->type_id();
|
||||
std::string addr_format = addr->format();
|
||||
std::vector<int> int_shapes;
|
||||
if (trans_flag) {
|
||||
int_shapes = trans::GetRuntimePaddingShape(node, j);
|
||||
} else {
|
||||
auto shape = AnfAlgo::GetOutputDeviceShape(node, j);
|
||||
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(int_shapes),
|
||||
[](size_t inner_item) { return SizeToInt(inner_item); });
|
||||
}
|
||||
|
||||
auto type = AnfAlgo::GetOutputInferDataType(node, j);
|
||||
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
string filepath = dump_path + '/' + kernel_name + '_' + "output_" + std::to_string(j);
|
||||
|
||||
DebugServices *debug_services = debugger->debug_services();
|
||||
TensorLoader *tensor_loader = debug_services->tensor_loader();
|
||||
std::string original_kernel_name = node->fullname_with_scope();
|
||||
size_t slot = j;
|
||||
auto ret = tensor_loader->DumpTensorToFile(original_kernel_name, trans_flag, filepath, format, int_shapes, type,
|
||||
addr_type_id, addr_format, slot);
|
||||
|
||||
if (!ret) {
|
||||
std::string error = "DumpTensorToFile Failed: flag:" + std::to_string(trans_flag) + ", path:" + filepath +
|
||||
", host_format:" + format + ".!";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DumpParameters(mindspore::session::KernelGraph *graph, const string &dump_path, DumpConfPtr dump_conf,
|
||||
Debugger *debugger) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(dump_conf);
|
||||
bool trans_flag = dump_conf->trans_flag();
|
||||
const auto ¶meters = graph->inputs();
|
||||
for (auto &item : parameters) {
|
||||
if (!item->isa<Parameter>()) {
|
||||
continue;
|
||||
}
|
||||
std::string parameter_name = item->fullname_with_scope();
|
||||
if (!dump_conf->IsKernelNeedDump(parameter_name)) {
|
||||
continue;
|
||||
}
|
||||
auto addr = AnfAlgo::GetOutputAddr(item, PARAMETER_OUTPUT_INDEX);
|
||||
TypeId addr_type_id = addr->type_id();
|
||||
std::string addr_format = addr->format();
|
||||
std::vector<int> int_shapes;
|
||||
if (trans_flag) {
|
||||
int_shapes = trans::GetRuntimePaddingShape(item, PARAMETER_OUTPUT_INDEX);
|
||||
} else {
|
||||
auto shape = AnfAlgo::GetOutputDeviceShape(item, PARAMETER_OUTPUT_INDEX);
|
||||
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(int_shapes),
|
||||
[](size_t inner_item) { return SizeToInt(inner_item); });
|
||||
}
|
||||
|
||||
auto type = AnfAlgo::GetOutputInferDataType(item, PARAMETER_OUTPUT_INDEX);
|
||||
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
string filepath = dump_path + '/' + parameter_name + '_' + "output_0";
|
||||
|
||||
DebugServices *debug_services = debugger->debug_services();
|
||||
TensorLoader *tensor_loader = debug_services->tensor_loader();
|
||||
std::string original_kernel_name = parameter_name;
|
||||
size_t slot = 0;
|
||||
auto ret = tensor_loader->DumpTensorToFile(original_kernel_name, trans_flag, filepath, format, int_shapes, type,
|
||||
addr_type_id, addr_format, slot);
|
||||
|
||||
if (!ret) {
|
||||
std::string error = "DumpTensorToFile Failed: flag:" + std::to_string(trans_flag) + ", path:" + filepath +
|
||||
", host_format:" + format + ".!";
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
bool GPUKernelRuntime::DumpData(mindspore::session::KernelGraph *graph, Debugger *debugger) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_LOG(INFO) << "Start dump step";
|
||||
DumpConfPtr dump_conf = GetDumpConf();
|
||||
MS_EXCEPTION_IF_NULL(dump_conf);
|
||||
dump_conf->UpdataCurIter();
|
||||
bool dump_flag = dump_conf->dump_enable();
|
||||
if (!dump_flag) {
|
||||
MS_LOG(INFO) << "Dump flag is disable, pass dump step";
|
||||
return true;
|
||||
}
|
||||
uint32_t cur_iter = dump_conf->cur_iter();
|
||||
if (dump_conf->dump_iter() != 0) {
|
||||
if (cur_iter != dump_conf->dump_iter()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "Cur iter is " << cur_iter;
|
||||
std::string net_name = dump_conf->dump_net_name();
|
||||
std::string iterator = std::to_string(cur_iter);
|
||||
std::string dump_path = dump_conf->dump_path();
|
||||
if (dump_path.back() == '/') {
|
||||
dump_path = dump_path + net_name + '/' + iterator;
|
||||
} else {
|
||||
dump_path = dump_path + '/' + net_name + '/' + iterator;
|
||||
}
|
||||
|
||||
// dump output
|
||||
DumpOutput(graph, dump_path, dump_conf, debugger);
|
||||
// dump parameters
|
||||
DumpParameters(graph, dump_path, dump_conf, debugger);
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
namespace {
|
||||
void LoadKernelData(Debugger *debugger, const CNodePtr &kernel,
|
||||
const std::vector<mindspore::kernel::AddressPtr> &kernel_inputs,
|
||||
const std::vector<mindspore::kernel::AddressPtr> &kernel_workspaces,
|
||||
const std::vector<mindspore::kernel::AddressPtr> &kernel_outputs, int exec_order, void *stream_ptr,
|
||||
bool dump_enabled) {
|
||||
if (!(debugger && (debugger->debugger_enabled() || dump_enabled))) {
|
||||
return;
|
||||
}
|
||||
std::string kernel_name = kernel->fullname_with_scope();
|
||||
auto output_size = AnfAlgo::GetOutputTensorNum(kernel);
|
||||
for (size_t j = 0; j < output_size; ++j) {
|
||||
auto addr = kernel_outputs[j];
|
||||
auto type = AnfAlgo::GetOutputInferDataType(kernel, j);
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
auto gpu_addr = std::make_unique<GPUDeviceAddress>(addr->addr, addr->size, format, type);
|
||||
string tensor_name = kernel_name + ':' + std::to_string(j);
|
||||
std::vector<int> int_shapes;
|
||||
auto shape = AnfAlgo::GetOutputDeviceShape(kernel, j);
|
||||
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(int_shapes),
|
||||
[](size_t inner_item) { return SizeToInt(inner_item); });
|
||||
auto ret = gpu_addr->LoadMemToHost(tensor_name, exec_order, format, int_shapes, type, j, debugger, false);
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "LoadMemToHost:"
|
||||
<< ", tensor_name:" << tensor_name << ", host_format:" << format << ".!";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void LoadParameters(const session::KernelGraph *graph, Debugger *debugger, bool dump_enabled) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
if (!(debugger && (debugger->debugger_enabled() || dump_enabled))) {
|
||||
return;
|
||||
}
|
||||
const auto ¶meters = graph->inputs();
|
||||
// for parameters, set its execution order to be 0;
|
||||
int exec_order = 0;
|
||||
for (auto &item : parameters) {
|
||||
if (!item->isa<Parameter>()) {
|
||||
continue;
|
||||
}
|
||||
std::string parameter_name = item->fullname_with_scope();
|
||||
auto addr = AnfAlgo::GetOutputAddr(item, PARAMETER_OUTPUT_INDEX);
|
||||
auto type = AnfAlgo::GetOutputInferDataType(item, PARAMETER_OUTPUT_INDEX);
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
string tensor_name = parameter_name + ':' + "0";
|
||||
auto gpu_addr = dynamic_cast<const mindspore::device::gpu::GPUDeviceAddress *>(addr);
|
||||
std::vector<int> int_shapes;
|
||||
auto shape = AnfAlgo::GetOutputDeviceShape(item, PARAMETER_OUTPUT_INDEX);
|
||||
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(int_shapes),
|
||||
[](size_t inner_item) { return SizeToInt(inner_item); });
|
||||
auto ret = gpu_addr->LoadMemToHost(tensor_name, exec_order, format, int_shapes, type, 0, debugger, true);
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "LoadMemToHost:"
|
||||
<< ", tensor_name:" << tensor_name << ", host_format:" << format << ".!";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ClearCurrentData(Debugger *debugger, bool dump_enabled) {
|
||||
if (debugger && (debugger->debugger_enabled() || dump_enabled)) {
|
||||
DebugServices *debug_services = debugger->debug_services();
|
||||
TensorLoader *tensor_loader = debug_services->tensor_loader();
|
||||
tensor_loader->EmptyCurrentTensor();
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
#endif
|
||||
|
||||
DeviceAddressPtr GPUKernelRuntime::CreateDeviceAddress(void *device_ptr, size_t device_size, const string &format,
|
||||
TypeId type_id) {
|
||||
return std::make_shared<GPUDeviceAddress>(device_ptr, device_size, format, type_id);
|
||||
|
@ -147,7 +368,7 @@ void GPUKernelRuntime::AssignMemory(session::KernelGraph *graph) {
|
|||
}
|
||||
}
|
||||
|
||||
bool GPUKernelRuntime::Run(session::KernelGraph *graph) {
|
||||
bool GPUKernelRuntime::Run(session::KernelGraph *graph, Debugger *debugger) {
|
||||
struct timeval start_time, end_time;
|
||||
(void)gettimeofday(&start_time, nullptr);
|
||||
bool ret = true;
|
||||
|
@ -170,7 +391,7 @@ bool GPUKernelRuntime::Run(session::KernelGraph *graph) {
|
|||
mem_reuse_util_ = mem_reuse_iter->second;
|
||||
MS_EXCEPTION_IF_NULL(mem_reuse_util_);
|
||||
|
||||
ret = RunOneStep(graph);
|
||||
ret = RunOneStep(graph, debugger);
|
||||
} else {
|
||||
ret = LaunchKernel(graph);
|
||||
}
|
||||
|
@ -182,28 +403,28 @@ bool GPUKernelRuntime::Run(session::KernelGraph *graph) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
bool GPUKernelRuntime::RunOneStep(const session::KernelGraph *graph) {
|
||||
bool GPUKernelRuntime::RunOneStep(const session::KernelGraph *graph, Debugger *debugger) {
|
||||
bool ret = true;
|
||||
auto graph_id = graph->graph_id();
|
||||
if (!is_first_step_map_[graph_id]) {
|
||||
// Normally run graph
|
||||
ret = LaunchKernelDynamic(graph);
|
||||
ret = LaunchKernelDynamic(graph, debugger);
|
||||
} else {
|
||||
// Mock run first step
|
||||
ret = LaunchKernelDynamic(graph, true, false);
|
||||
ret = LaunchKernelDynamic(graph, debugger, true, false);
|
||||
if (ret) {
|
||||
// Normally run graph
|
||||
ret = LaunchKernelDynamic(graph);
|
||||
ret = LaunchKernelDynamic(graph, debugger);
|
||||
} else {
|
||||
// Trigger memory swap
|
||||
ret = SearchMemSwapScheme(graph);
|
||||
ret = SearchMemSwapScheme(graph, debugger);
|
||||
}
|
||||
is_first_step_map_[graph_id] = false;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool GPUKernelRuntime::SearchMemSwapScheme(const session::KernelGraph *graph) {
|
||||
bool GPUKernelRuntime::SearchMemSwapScheme(const session::KernelGraph *graph, Debugger *debugger) {
|
||||
MS_LOG(WARNING) << "Run out of memory and try memory swapping, it may take some time, please wait a moment.";
|
||||
bool ret = false;
|
||||
ClearKernelOldOutputAndWorkspace(graph);
|
||||
|
@ -217,7 +438,7 @@ bool GPUKernelRuntime::SearchMemSwapScheme(const session::KernelGraph *graph) {
|
|||
if (!mem_swap_manager_->RetreatSwapInfo()) {
|
||||
return false;
|
||||
}
|
||||
ret = LaunchKernelDynamic(graph, true, false);
|
||||
ret = LaunchKernelDynamic(graph, debugger, true, false);
|
||||
if (!ret) {
|
||||
ClearKernelOldOutputAndWorkspace(graph);
|
||||
}
|
||||
|
@ -225,14 +446,14 @@ bool GPUKernelRuntime::SearchMemSwapScheme(const session::KernelGraph *graph) {
|
|||
mem_swap_manager_->AssignHostMemory();
|
||||
|
||||
// Time profiling
|
||||
ret = LaunchKernelDynamic(graph, false, true);
|
||||
ret = LaunchKernelDynamic(graph, debugger, false, true);
|
||||
if (!ret) {
|
||||
return ret;
|
||||
}
|
||||
return RefineMemSwapScheme(graph);
|
||||
return RefineMemSwapScheme(graph, debugger);
|
||||
}
|
||||
|
||||
bool GPUKernelRuntime::RefineMemSwapScheme(const session::KernelGraph *graph) {
|
||||
bool GPUKernelRuntime::RefineMemSwapScheme(const session::KernelGraph *graph, Debugger *debugger) {
|
||||
MS_LOG(WARNING) << "Refine memory swap scheme, it may take some time, please wait a moment.";
|
||||
auto &kernels = graph->execution_order();
|
||||
for (const auto &kernel : kernels) {
|
||||
|
@ -245,7 +466,7 @@ bool GPUKernelRuntime::RefineMemSwapScheme(const session::KernelGraph *graph) {
|
|||
bool ret = false;
|
||||
while (!ret) {
|
||||
mem_swap_manager_->AdjustSwapInPos(kernel, swap_in_task_idx);
|
||||
ret = LaunchKernelDynamic(graph, true, false);
|
||||
ret = LaunchKernelDynamic(graph, debugger, true, false);
|
||||
if (!ret) {
|
||||
ClearKernelOldOutputAndWorkspace(graph);
|
||||
ClearSwapInfo(true);
|
||||
|
@ -384,14 +605,24 @@ void GPUKernelRuntime::ClearKernelWorkspaceAddress(const session::KernelGraph *g
|
|||
}
|
||||
}
|
||||
|
||||
bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bool mock, bool profiling) {
|
||||
bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, Debugger *debugger, bool mock,
|
||||
bool profiling) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(mem_reuse_util_);
|
||||
// Reset the reference count.
|
||||
mem_reuse_util_->ResetDynamicUsedRefCount();
|
||||
// The inputs and outputs memory of communication kernel need be continuous, so separate processing.
|
||||
AllocCommunicationOpDynamicRes(graph);
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
bool dump_enabled = GPUKernelRuntime::DumpDataEnabledIteration();
|
||||
if (!mock) {
|
||||
// collect weights and bias
|
||||
LoadParameters(graph, debugger, dump_enabled);
|
||||
}
|
||||
#endif
|
||||
auto &kernels = graph->execution_order();
|
||||
int exec_order = 1;
|
||||
for (const auto &kernel : kernels) {
|
||||
auto kernel_mod = AnfAlgo::GetKernelMod(kernel);
|
||||
MS_EXCEPTION_IF_NULL(kernel_mod);
|
||||
|
@ -400,6 +631,12 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo
|
|||
AddressPtrList kernel_outputs;
|
||||
auto ret = AllocKernelDynamicRes(*kernel_mod, kernel, &kernel_inputs, &kernel_workspaces, &kernel_outputs, mock);
|
||||
if (!ret) {
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
if (!mock) {
|
||||
// invalidate current data collected by the debugger
|
||||
ClearCurrentData(debugger, dump_enabled);
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
if (!mock) {
|
||||
|
@ -409,9 +646,21 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo
|
|||
} else {
|
||||
LaunchKernelWithTimeProfiling(kernel, kernel_inputs, kernel_workspaces, kernel_outputs);
|
||||
}
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
// called once per kernel to collect the outputs to the kernel (does a SyncDeviceToHost)
|
||||
LoadKernelData(debugger, kernel, kernel_inputs, kernel_workspaces, kernel_outputs, exec_order, stream_,
|
||||
dump_enabled);
|
||||
#endif
|
||||
}
|
||||
exec_order = exec_order + 1;
|
||||
FreeKernelDynamicRes(kernel);
|
||||
if (!UpdateMemorySwapTask(kernel, mock, profiling)) {
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
if (!mock) {
|
||||
// invalidate current data collected by the debugger
|
||||
ClearCurrentData(debugger, dump_enabled);
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -38,7 +38,10 @@ class GPUKernelRuntime : public KernelRuntime {
|
|||
bool Init() override;
|
||||
void ReleaseDeviceRes() override;
|
||||
void AssignMemory(session::KernelGraph *graph) override;
|
||||
bool Run(session::KernelGraph *graph) override;
|
||||
bool Run(session::KernelGraph *graph, Debugger *debugger = nullptr) override;
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
bool DumpData(session::KernelGraph *graph, Debugger *debugger = nullptr) override;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
DeviceAddressPtr CreateDeviceAddress(void *device_ptr, size_t device_size, const string &format,
|
||||
|
@ -61,10 +64,11 @@ class GPUKernelRuntime : public KernelRuntime {
|
|||
void ClearKernelOutputAddress(const session::KernelGraph *graph);
|
||||
void ClearKernelWorkspaceAddress(const session::KernelGraph *graph);
|
||||
void ClearKernelOldOutputAndWorkspace(const session::KernelGraph *graph);
|
||||
bool RunOneStep(const session::KernelGraph *graph);
|
||||
bool SearchMemSwapScheme(const session::KernelGraph *graph);
|
||||
bool RefineMemSwapScheme(const session::KernelGraph *graph);
|
||||
bool LaunchKernelDynamic(const session::KernelGraph *graph, bool mock = false, bool profiling = false);
|
||||
bool RunOneStep(const session::KernelGraph *graph, Debugger *debugger = nullptr);
|
||||
bool SearchMemSwapScheme(const session::KernelGraph *graph, Debugger *debugger = nullptr);
|
||||
bool RefineMemSwapScheme(const session::KernelGraph *graph, Debugger *debugger = nullptr);
|
||||
bool LaunchKernelDynamic(const session::KernelGraph *graph, Debugger *debugger = nullptr, bool mock = false,
|
||||
bool profiling = false);
|
||||
void LaunchKernelWithTimeProfiling(const AnfNodePtr &kernel, const AddressPtrList &inputs,
|
||||
const AddressPtrList &workspace, const AddressPtrList &outputs);
|
||||
bool AttemptMallocMem(const DeviceAddressPtr &device_address, size_t size, bool mock);
|
||||
|
|
|
@ -41,7 +41,7 @@ KernelRuntime::~KernelRuntime() {
|
|||
#endif
|
||||
}
|
||||
|
||||
bool KernelRuntime::Run(session::KernelGraph *graph) {
|
||||
bool KernelRuntime::Run(session::KernelGraph *graph, Debugger *debugger) {
|
||||
bool ret = false;
|
||||
auto context_ptr = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(context_ptr);
|
||||
|
@ -72,7 +72,7 @@ bool KernelRuntime::Run(session::KernelGraph *graph) {
|
|||
}
|
||||
|
||||
// for D to impl
|
||||
bool KernelRuntime::DumpData(mindspore::session::KernelGraph *graph) {
|
||||
bool KernelRuntime::DumpData(mindspore::session::KernelGraph *graph, Debugger *debugger) {
|
||||
if (graph != nullptr) {
|
||||
return true;
|
||||
}
|
||||
|
@ -190,6 +190,39 @@ void KernelRuntime::RunOpClearMemory(const session::KernelGraph *graph) {
|
|||
}
|
||||
}
|
||||
|
||||
bool KernelRuntime::DumpDataEnabled() {
|
||||
bool ret = false;
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
DumpConfPtr dump_conf = GetDumpConf();
|
||||
MS_EXCEPTION_IF_NULL(dump_conf);
|
||||
bool dump_flag = dump_conf->dump_enable();
|
||||
if (!dump_flag) {
|
||||
return ret;
|
||||
}
|
||||
ret = true;
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool KernelRuntime::DumpDataEnabledIteration() {
|
||||
bool ret = false;
|
||||
#ifdef ENABLE_DUMP_E2E
|
||||
if (!DumpDataEnabled()) {
|
||||
return ret;
|
||||
}
|
||||
DumpConfPtr dump_conf = GetDumpConf();
|
||||
MS_EXCEPTION_IF_NULL(dump_conf);
|
||||
uint32_t cur_iter = dump_conf->cur_iter() + 1;
|
||||
if (dump_conf->dump_iter() != 0) {
|
||||
if (cur_iter != dump_conf->dump_iter()) {
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
ret = true;
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
void KernelRuntime::AssignStaticMemory(session::KernelGraph *graph) {
|
||||
AssignStaticMemoryInput(graph);
|
||||
AssignStaticMemoryValueNode(graph);
|
||||
|
|
|
@ -55,8 +55,10 @@ class KernelRuntime {
|
|||
virtual void AssignMemory(session::KernelGraph *graph);
|
||||
void RunOpAssignMemory(const std::vector<tensor::TensorPtr> &input_tensors, session::KernelGraph *graph);
|
||||
void RunOpClearMemory(const session::KernelGraph *graph);
|
||||
virtual bool Run(session::KernelGraph *graph);
|
||||
virtual bool DumpData(session::KernelGraph *graph);
|
||||
bool DumpDataEnabled();
|
||||
bool DumpDataEnabledIteration();
|
||||
virtual bool Run(session::KernelGraph *graph, Debugger *debugger = nullptr);
|
||||
virtual bool DumpData(session::KernelGraph *graph, Debugger *debugger = nullptr);
|
||||
virtual bool LoadData(session::KernelGraph *graph, Debugger *debugger);
|
||||
virtual bool RunTask(const session::KernelGraph *graph);
|
||||
virtual bool GenTask(const session::KernelGraph *graph);
|
||||
|
|
Loading…
Reference in New Issue